These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 24690783)

  • 1. Plasmonic extinction of gated graphene nanoribbon array analyzed by a scaled uniform Fermi level.
    Kong XT; Yang X; Li Z; Dai Q; Qiu X
    Opt Lett; 2014 Mar; 39(6):1345-8. PubMed ID: 24690783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Anderson localization of edge-mode graphene plasmons in randomly gated nanoribbons.
    Zhu Y; Li CG; Zhu Y; Xiong B; Peng R; Wang M
    Opt Express; 2020 May; 28(11):16879-16892. PubMed ID: 32549501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model.
    Tene T; Guevara M; Viteri E; Maldonado A; Pisarra M; Sindona A; Vacacela Gomez C; Bellucci S
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring the transmission lineshape spectrum of zigzag graphene nanoribbon based heterojunctions via controlling their width and edge protrusions.
    Dou KP; Fu XX; De Sarkar A; Zhang RQ
    Nanoscale; 2015 Dec; 7(47):20003-8. PubMed ID: 26565806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system.
    Xu H; He Z; Chen Z; Nie G; Li H
    Opt Express; 2020 Aug; 28(18):25767-25777. PubMed ID: 32906861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon-drag thermopower in an armchair graphene nanoribbon.
    Bhargavi KS; Kubakaddi SS
    J Phys Condens Matter; 2011 Jul; 23(27):275303. PubMed ID: 21697579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Admittance of T-stub graphene nanoribbon structure.
    Lan J; Ye EJ; Sui WQ; Zhao X
    Phys Chem Chem Phys; 2013 Jan; 15(2):671-9. PubMed ID: 23187783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions.
    Chen YC; Cao T; Chen C; Pedramrazi Z; Haberer D; de Oteyza DG; Fischer FR; Louie SG; Crommie MF
    Nat Nanotechnol; 2015 Feb; 10(2):156-60. PubMed ID: 25581888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
    Zhang G; Li X; Wu G; Wang J; Culcer D; Kaxiras E; Zhang Z
    Nanoscale; 2014 Mar; 6(6):3259-67. PubMed ID: 24509485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large-area 15 nm graphene nanoribbon array patterned by a focused ion beam.
    Zhang Y; Hui C; Sun R; Li K; He K; Ma X; Liu F
    Nanotechnology; 2014 Apr; 25(13):135301. PubMed ID: 24583466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of plasmonic waves in graphene by guided-mode resonances.
    Gao W; Shu J; Qiu C; Xu Q
    ACS Nano; 2012 Sep; 6(9):7806-13. PubMed ID: 22862147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure and transport properties of monatomic Fe chains in a vacuum and anchored to a graphene nanoribbon.
    Nguyen NB; García-Fuente A; Lebon A; Gallego LJ; Vega A
    J Phys Condens Matter; 2012 Nov; 24(45):455304. PubMed ID: 23092846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-dependent electronic conduction along zigzag graphene nanoribbons bearing adsorbed Ni and Fe nanostructures.
    García-Fuente A; Gallego LJ; Vega A
    J Phys Condens Matter; 2014 Apr; 26(16):165302. PubMed ID: 24691196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knitted graphene-nanoribbon sheet: a mechanically robust structure.
    Wei N; Fan Z; Xu LQ; Zheng YP; Wang HQ; Zheng JC
    Nanoscale; 2012 Feb; 4(3):785-91. PubMed ID: 22170502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique chemical reactivity of a graphene nanoribbon's zigzag edge.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-parameter charge pump in a zigzag graphene nanoribbon.
    Gu Y; Yang YH; Wang J; Chan KS
    J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nonmagnetic impurities on the spin transport property of a graphene nanoribbon device.
    Park J; Yang H; Park KS; Lee EK
    J Chem Phys; 2009 Jun; 130(21):214103. PubMed ID: 19508052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fingerprints of a position-dependent Fermi velocity on scanning tunnelling spectra of strained graphene.
    Oliva-Leyva M; Barrios-Vargas JE; Wang C
    J Phys Condens Matter; 2018 Feb; 30(8):085702. PubMed ID: 29334358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.