These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24690810)

  • 1. Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation.
    Cheng Q; Wonfor A; Wei JL; Penty RV; White IH
    Opt Lett; 2014 Mar; 39(6):1449-52. PubMed ID: 24690810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of the feasibility of large-port-count optical switching using a hybrid Mach-Zehnder interferometer-semiconductor optical amplifier switch module in a recirculating loop.
    Cheng Q; Wonfor A; Wei JL; Penty RV; White IH
    Opt Lett; 2014 Sep; 39(18):5244-7. PubMed ID: 26466241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InP monolithically integrated wavelength selector based on periodic optical filter and optical switch chain.
    Calabretta N; Stabile R; Albores-Mejia A; Williams KA; Dorren HJ
    Opt Express; 2011 Dec; 19(26):B531-6. PubMed ID: 22274066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers.
    Lu L; Zhou L; Li X; Chen J
    Opt Lett; 2014 Mar; 39(6):1633-6. PubMed ID: 24690856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bit rate adaptable operation of a hybrid integrated wavelength converter using a semiconductor optical amplifier type Mach-Zehnder interferometer.
    Uenohara H; Aikawa Y
    Opt Lett; 2013 Dec; 38(23):4982-4. PubMed ID: 24281488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of all-optical latching operation of a monolithically integrated SOA-MZI with a feedback loop.
    Naito Y; Shimizu S; Kato T; Kobayashi K; Uenohara H
    Opt Express; 2012 Dec; 20(26):B339-49. PubMed ID: 23262871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 10.7 Gb/s reflective electroabsorption modulator monolithically integrated with semiconductor optical amplifier for colorless WDM-PON.
    Kim HS; Kim DC; Kim KS; Choi BS; Kwon OK
    Opt Express; 2010 Oct; 18(22):23324-30. PubMed ID: 21164673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers.
    Chen S; Shi Y; He S; Dai D
    Opt Lett; 2016 Feb; 41(4):836-9. PubMed ID: 26872201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Submilliwatt, ultrafast and broadband electro-optic silicon switches.
    Dong P; Liao S; Liang H; Shafiiha R; Feng D; Li G; Zheng X; Krishnamoorthy AV; Asghari M
    Opt Express; 2010 Nov; 18(24):25225-31. PubMed ID: 21164869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 8 × 8 SOA-based optical switch with zero fiber-to-fiber insertion loss.
    Mojaver HR; Tolstikhin V; Gargallo B; Baños R; Domenech D; Lo J; Kumar D; Leong KW; Liboiron-Ladouceur O
    Opt Lett; 2020 Aug; 45(16):4650-4653. PubMed ID: 32797032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 650-nm 1 × 2 polymeric thermo-optic switch with low power consumption.
    Wang XB; Sun J; Liu YF; Sun JW; Chen CM; Sun XQ; Wang F; Zhang DM
    Opt Express; 2014 May; 22(9):11119-28. PubMed ID: 24921810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.
    Miao W; Luo J; Di Lucente S; Dorren H; Calabretta N
    Opt Express; 2014 Feb; 22(3):2465-72. PubMed ID: 24663538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanosecond photonic switch architectures demonstrated in an all-digital monolithic platform.
    Dupuis N; Proesel JE; Ainspan H; Baks CW; Meghelli M; Lee BG
    Opt Lett; 2019 Aug; 44(15):3610-3612. PubMed ID: 31368925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact InGaAsP/InP nonblocking 4 × 4 trench-coupler-based Mach-Zehnder photonic switch fabric.
    Liu K; Wang L; Zhang C; Ma Q; Qi B
    Appl Opt; 2018 May; 57(14):3838-3846. PubMed ID: 29791350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier.
    Meuer C; Schmidt-Langhorst C; Schmeckebier H; Fiol G; Arsenijević D; Schubert C; Bimberg D
    Opt Express; 2011 Feb; 19(4):3788-98. PubMed ID: 21369203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 40 Gb/s 2R Burst Mode Receiver with a single integrated SOA-MZI switch.
    Kanellos GT; Pleros N; Petrantonakis D; Zakynthinos P; Avramopoulos H; Maxwell G; Poustie A
    Opt Express; 2007 Apr; 15(8):5043-9. PubMed ID: 19532753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact, low-loss and low-power 8×8 broadband silicon optical switch.
    Chen L; Chen YK
    Opt Express; 2012 Aug; 20(17):18977-85. PubMed ID: 23038537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 10  Gb/s optical random access memory (RAM) cell.
    Tsakyridis A; Alexoudi T; Miliou A; Pleros N; Vagionas C
    Opt Lett; 2019 Apr; 44(7):1821-1824. PubMed ID: 30933156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip broadband silicon thermo-optic 2☓2 four-mode optical switch for optical space and local mode switching.
    Zhou T; Jia H; Ding J; Zhang L; Fu X; Yang L
    Opt Express; 2018 Apr; 26(7):8375-8384. PubMed ID: 29715805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring and automatic tuning and stabilization of a 2×2 MZI optical switch for large-scale WDM switch networks.
    AlTaha MW; Jayatilleka H; Lu Z; Chung JF; Celo D; Goodwill D; Bernier E; Mirabbasi S; Chrostowski L; Shekhar S
    Opt Express; 2019 Aug; 27(17):24747-24764. PubMed ID: 31510359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.