These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24690852)

  • 1. Relaxation dynamics of a quantum emitter resonantly coupled to a metal nanoparticle.
    Nerkararyan KV; Bozhevolnyi SI
    Opt Lett; 2014 Mar; 39(6):1617-20. PubMed ID: 24690852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation dynamics of a quantum emitter resonantly coupled to a coherent state of a localized surface plasmon.
    Nerkararyan KV; Bozhevolnyi SI
    Faraday Discuss; 2015; 178():295-306. PubMed ID: 25736718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of single quantum emitter and dark plasmon supported by a metal nanoring.
    Deinega A; Seideman T
    J Chem Phys; 2014 Jun; 140(23):234311. PubMed ID: 24952545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of plasmon emission and dynamics at the transition from classical to quantum coupling.
    Kravtsov V; Berweger S; Atkin JM; Raschke MB
    Nano Lett; 2014 Sep; 14(9):5270-5. PubMed ID: 25089501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design optimization of spasers considering the degeneracy of excited plasmon modes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    Opt Express; 2013 Jul; 21(13):15335-49. PubMed ID: 23842320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Raman scattering for an atom or molecule near a metal nanocylinder: quantum theory of spontaneous emission and coupling to surface plasmon modes.
    Zuev VS; Frantsesson AV; Gao J; Eden JG
    J Chem Phys; 2005 Jun; 122(21):214726. PubMed ID: 15974781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Coupling Dynamics of a Quantum Emitter near a Topological Insulator Nanoparticle.
    Thanopulos I; Yannopapas V; Paspalakis E
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide.
    Sokhoyan R; Atwater HA
    Opt Express; 2013 Dec; 21(26):32279-90. PubMed ID: 24514821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power flow from a dipole emitter near an optical antenna.
    Huang KC; Jun YC; Seo MK; Brongersma ML
    Opt Express; 2011 Sep; 19(20):19084-92. PubMed ID: 21996849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of molecule metal nano-particle interaction: Quantum description of plasmonic lasing.
    Zhang Y; May V
    J Chem Phys; 2015 Jun; 142(22):224702. PubMed ID: 26071722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle.
    Varguet H; Rousseaux B; Dzsotjan D; Jauslin HR; Guérin S; Colas des Francs G
    Opt Lett; 2016 Oct; 41(19):4480-4483. PubMed ID: 27749860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon emission rate engineering using graphene nanodisc cavities.
    Kumar A; Fung KH; Homer Reid MT; Fang NX
    Opt Express; 2014 Mar; 22(6):6400-15. PubMed ID: 24663988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.
    Li JB; Kim NC; Cheng MT; Zhou L; Hao ZH; Wang QQ
    Opt Express; 2012 Jan; 20(2):1856-61. PubMed ID: 22274530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device.
    Kuo Y; Chen HT; Chang WY; Chen HS; Yang CC; Kiang YW
    Opt Express; 2014 Jan; 22 Suppl 1():A155-66. PubMed ID: 24921992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.
    Gettapola K; Hapuarachchi H; Stockman MI; Premaratne M
    J Phys Condens Matter; 2020 Mar; 32(12):125301. PubMed ID: 31770745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-exponential decay of dark localized surface plasmons.
    Ginzburg P; Zayats AV
    Opt Express; 2012 Mar; 20(6):6720-7. PubMed ID: 22418556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption.
    Morton SM; Jensen L
    J Chem Phys; 2011 Oct; 135(13):134103. PubMed ID: 21992278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.