BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 24691005)

  • 1. Discovery of a "white-gray-opaque" tristable phenotypic switching system in candida albicans: roles of non-genetic diversity in host adaptation.
    Tao L; Du H; Guan G; Dai Y; Nobile CJ; Liang W; Cao C; Zhang Q; Zhong J; Huang G
    PLoS Biol; 2014 Apr; 12(4):e1001830. PubMed ID: 24691005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans.
    Cao C; Guan G; Du H; Tao L; Huang G
    Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida albicans Double Mutants Lacking both
    Park YN; Pujol C; Wessels DJ; Soll DR
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32968010
    [No Abstract]   [Full Text] [Related]  

  • 4. Discovery of the gray phenotype and white-gray-opaque tristable phenotypic transitions in Candida dubliniensis.
    Yue H; Hu J; Guan G; Tao L; Du H; Li H; Huang G
    Virulence; 2016 Apr; 7(3):230-42. PubMed ID: 26714067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gray phenotype and tristable phenotypic transitions in the human fungal pathogen Candida tropicalis.
    Zhang Y; Tao L; Zhang Q; Guan G; Nobile CJ; Zheng Q; Ding X; Huang G
    Fungal Genet Biol; 2016 Aug; 93():10-6. PubMed ID: 27246518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White-opaque switching in natural MTLa/α isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex.
    Xie J; Tao L; Nobile CJ; Tong Y; Guan G; Sun Y; Cao C; Hernday AD; Johnson AD; Zhang L; Bai FY; Huang G
    PLoS Biol; 2013; 11(3):e1001525. PubMed ID: 23555196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MTL-independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation.
    Porman AM; Hirakawa MP; Jones SK; Wang N; Bennett RJ
    PLoS Genet; 2013 Mar; 9(3):e1003369. PubMed ID: 23555286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of EFG1 promotes Candida albicans opaque formation responding to pH via Rim101.
    Nie X; Liu X; Wang H; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):735-44. PubMed ID: 20870932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The PHO pathway regulates white-opaque switching and sexual mating in the human fungal pathogen Candida albicans.
    Zheng Q; Guan G; Cao C; Li Q; Huang G
    Curr Genet; 2020 Dec; 66(6):1155-1162. PubMed ID: 32761264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of white-opaque switching in Candida albicans.
    Morschhäuser J
    Med Microbiol Immunol; 2010 Aug; 199(3):165-72. PubMed ID: 20390300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virulence of "white-gray-opaque" tri-stable transformation in clinical Candida albicans in vitro and in vivo.
    Yang J; Feng W; Xi Z; Yang L; Zhao X; Ma Y; Ma Y
    Microb Pathog; 2021 May; 154():104825. PubMed ID: 33689812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of the Transcription Factors Sfl2 and Efg1 in White-Opaque Switching in a/α Strains of Candida albicans.
    Park YN; Conway K; Conway TP; Daniels KJ; Soll DR
    mSphere; 2019 Apr; 4(2):. PubMed ID: 30996111
    [No Abstract]   [Full Text] [Related]  

  • 13. The WOR1 5' untranslated region regulates white-opaque switching in Candida albicans by reducing translational efficiency.
    Guan Z; Liu H
    Mol Microbiol; 2015 Jul; 97(1):125-38. PubMed ID: 25831958
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Park YN; Conway K; Pujol C; Daniels KJ; Soll DR
    mSphere; 2020 Feb; 5(1):. PubMed ID: 32024711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rim101-upregulated Fets contribute to dark pigment formation in gray cells of Candida albicans.
    Dai B; Xu Y; Wu H; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2021 Dec; 53(12):1723-1730. PubMed ID: 34599586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans.
    Dai B; Xu Y; Gao N; Chen J
    FEBS Open Bio; 2021 Mar; 11(3):598-621. PubMed ID: 33350590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans.
    Alkafeef SS; Yu C; Huang L; Liu H
    PLoS Genet; 2018 Jan; 14(1):e1007176. PubMed ID: 29337983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the
    Conway TP; Conway K; Boksa FA; Pujol C; Wessels D; Soll DR
    mBio; 2021 Oct; 12(5):e0232021. PubMed ID: 34488444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-acetylglucosamine induces white-to-opaque switching and mating in Candida tropicalis, providing new insights into adaptation and fungal sexual evolution.
    Xie J; Du H; Guan G; Tong Y; Kourkoumpetis TK; Zhang L; Bai FY; Huang G
    Eukaryot Cell; 2012 Jun; 11(6):773-82. PubMed ID: 22544905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-acetylglucosamine-induced white-to-opaque switching in Candida albicans is independent of the Wor2 transcription factor.
    Tong Y; Cao C; Xie J; Ni J; Guan G; Tao L; Zhang L; Huang G
    Fungal Genet Biol; 2014 Jan; 62():71-7. PubMed ID: 24161730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.