These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24691108)

  • 1. Inference and validation of predictive gene networks from biomedical literature and gene expression data.
    Olsen C; Fleming K; Prendergast N; Rubio R; Emmert-Streib F; Bontempi G; Haibe-Kains B; Quackenbush J
    Genomics; 2014; 103(5-6):329-36. PubMed ID: 24691108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relevance of different prior knowledge sources for inferring gene interaction networks.
    Olsen C; Bontempi G; Emmert-Streib F; Quackenbush J; Haibe-Kains B
    Front Genet; 2014; 5():177. PubMed ID: 25009552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum.
    Guo L; Ji M; Ye K
    BMC Genomics; 2020 Feb; 21(1):179. PubMed ID: 32093656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-species network inference improves gene regulatory network reconstruction for early embryonic development in Drosophila.
    Joshi A; Beck Y; Michoel T
    J Comput Biol; 2015 Apr; 22(4):253-65. PubMed ID: 25844666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic inference and ranking of gene regulatory pathways as a shortest-path problem.
    Jensen JD; Jensen DM; Clement MJ; Snell QO
    BMC Bioinformatics; 2013; 14 Suppl 13(Suppl 13):S5. PubMed ID: 24266986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Multiple Data Sources for Gene Network Inference Using Genetic Perturbation Data.
    Liang X; Young WC; Hung LH; Raftery AE; Yeung KY
    J Comput Biol; 2019 Oct; 26(10):1113-1129. PubMed ID: 31009236
    [No Abstract]   [Full Text] [Related]  

  • 10. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene module based regulator inference identifying miR-139 as a tumor suppressor in colorectal cancer.
    Gu J; Chen Y; Huang H; Yin L; Xie Z; Zhang MQ
    Mol Biosyst; 2014 Dec; 10(12):3249-54. PubMed ID: 25286864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0.
    Weber M; Henkel SG; Vlaic S; Guthke R; van Zoelen EJ; Driesch D
    BMC Syst Biol; 2013 Jan; 7():1. PubMed ID: 23280066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prior-based integrative framework for functional transcriptional regulatory network inference.
    Siahpirani AF; Roy S
    Nucleic Acids Res; 2017 Feb; 45(4):e21. PubMed ID: 27794550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction-based transcriptome analysis via differential network inference.
    Leng J; Wu LY
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36274239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network-based predictive gene-expression signature for adjuvant chemotherapy benefit in stage II colorectal cancer.
    Cao B; Luo L; Feng L; Ma S; Chen T; Ren Y; Zha X; Cheng S; Zhang K; Chen C
    BMC Cancer; 2017 Dec; 17(1):844. PubMed ID: 29237416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Target Genes and Pathways Associated With Cetuximab Insensitivity in Colorectal Cancer.
    Yu C; Hong H; Lu J; Zhao X; Hu W; Zhang S; Zong Y; Mao Z; Li J; Wang M; Feng B; Sun J; Zheng M
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818806905. PubMed ID: 30336768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing strengths and weaknesses of methods for gene network inference.
    Marbach D; Prill RJ; Schaffter T; Mattiussi C; Floreano D; Stolovitzky G
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6286-91. PubMed ID: 20308593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using shRNA experiments to validate gene regulatory networks.
    Olsen C; Fleming K; Prendergast N; Rubio R; Emmert-Streib F; Bontempi G; Quackenbush J; Haibe-Kains B
    Genom Data; 2015 Jun; 4():123-6. PubMed ID: 26484195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint network and node selection for pathway-based genomic data analysis.
    Zhe S; Naqvi SA; Yang Y; Qi Y
    Bioinformatics; 2013 Aug; 29(16):1987-96. PubMed ID: 23749986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ToP: a trend-of-disease-progression procedure works well for identifying cancer genes from multi-state cohort gene expression data for human colorectal cancer.
    Chung FH; Lee HH; Lee HC
    PLoS One; 2013; 8(6):e65683. PubMed ID: 23799036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.