BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 24691168)

  • 1. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actigraph GT3X: validation and determination of physical activity intensity cut points.
    Santos-Lozano A; Santín-Medeiros F; Cardon G; Torres-Luque G; Bailón R; Bergmeir C; Ruiz JR; Lucia A; Garatachea N
    Int J Sports Med; 2013 Nov; 34(11):975-82. PubMed ID: 23700330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.
    Vähä-Ypyä H; Vasankari T; Husu P; Suni J; Sievänen H
    Clin Physiol Funct Imaging; 2015 Jan; 35(1):64-70. PubMed ID: 24393233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the activPAL accelerometer for physical activity and energy expenditure estimation in a semi-structured setting.
    Montoye AHK; Pivarnik JM; Mudd LM; Biswas S; Pfeiffer KA
    J Sci Med Sport; 2017 Nov; 20(11):1003-1007. PubMed ID: 28483558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective diagnosis of ADHD using IMUs.
    O'Mahony N; Florentino-Liano B; Carballo JJ; Baca-García E; Rodríguez AA
    Med Eng Phys; 2014 Jul; 36(7):922-6. PubMed ID: 24657100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M; Guo Y; Qin Y; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Energy Expenditure Prediction Models Using Real-Time Shoe-Based Motion Detectors.
    Lin SY; Lai YC; Hsia CC; Su PF; Chang CH
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2152-2162. PubMed ID: 28113297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH; Mudd LM; Biswas S; Pfeiffer KA
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic algorithm-based classifiers fusion for multisensor activity recognition of elderly people.
    Chernbumroong S; Cang S; Yu H
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):282-9. PubMed ID: 24771599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a multi-sensor armband during free-living activity in adults with cystic fibrosis.
    Cox NS; Alison JA; Button BM; Wilson JW; Morton JM; Dowman LM; Holland AE
    J Cyst Fibros; 2014 May; 13(3):347-50. PubMed ID: 24374296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.
    Qiao Wang ; Lohit S; Toledo MJ; Buman MP; Turaga P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study.
    Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP;
    J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.