These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 24691168)

  • 21. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.
    Montoye AHK; Begum M; Henning Z; Pfeiffer KA
    Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors.
    Altini M; Penders J; Amft O
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):469-75. PubMed ID: 25594986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feature selection and activity recognition system using a single triaxial accelerometer.
    Gupta P; Dallas T
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.
    Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting free-living energy expenditure using a miniaturized ear-worn sensor: an evaluation against doubly labeled water.
    Bouarfa L; Atallah L; Kwasnicki RM; Pettitt C; Frost G; Yang GZ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):566-75. PubMed ID: 24108707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative validity of 3 accelerometer models for estimating energy expenditure during light activity.
    Wetten AA; Batterham M; Tan SY; Tapsell L
    J Phys Act Health; 2014 Mar; 11(3):638-47. PubMed ID: 23417054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of resistance exercise energy expenditure using accelerometry.
    Rawson ES; Walsh TM
    Med Sci Sports Exerc; 2010 Mar; 42(3):622-8. PubMed ID: 19952824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities.
    Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB
    J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury.
    Hiremath SV; Ding D; Farringdon J; Vyas N; Cooper RA
    Spinal Cord; 2013 Sep; 51(9):705-9. PubMed ID: 23689386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the ActiGraph accelerometer and Bouchard diary to estimate energy expenditure in Spanish adolescents.
    Martínez-Gómez D; Puertollano MA; Wärnberg J; Calabro MA; Welk GJ; Sjöström M; Veiga OL; Marcos A
    Nutr Hosp; 2009; 24(6):701-10. PubMed ID: 20049374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Step counting and energy expenditure estimation in patients with chronic obstructive pulmonary disease and healthy elderly: accuracy of 2 motion sensors.
    Furlanetto KC; Bisca GW; Oldemberg N; Sant'anna TJ; Morakami FK; Camillo CA; Cavalheri V; Hernandes NA; Probst VS; Ramos EM; Brunetto AF; Pitta F
    Arch Phys Med Rehabil; 2010 Feb; 91(2):261-7. PubMed ID: 20159131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.
    Khan AM; Siddiqi MH; Lee SW
    Sensors (Basel); 2013 Sep; 13(10):13099-122. PubMed ID: 24084108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical activity monitoring in stroke: SenseWear Pro2 activity accelerometer versus Yamax Digi-Walker SW-200 pedometer.
    Vanroy C; Vissers D; Cras P; Beyne S; Feys H; Vanlandewijck Y; Truijen S
    Disabil Rehabil; 2014; 36(20):1695-703. PubMed ID: 24279597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Introducing a modular activity monitoring system.
    Reiss A; Stricker D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5621-4. PubMed ID: 22255614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of active video games intensity: comparison between accelerometer-based predictions and indirect calorimetric measurements.
    Tripette J; Ando T; Murakami H; Yamamoto K; Ohkawara K; Tanaka S; Miyachi M
    Technol Health Care; 2014 Jan; 22(2):199-208. PubMed ID: 24898861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Posture and activity recognition and energy expenditure estimation in a wearable platform.
    Sazonov E; Hegde N; Browning RC; Melanson EL; Sazonova NA
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1339-46. PubMed ID: 26011870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.