These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 24691168)

  • 41. Estimating Energy Expenditure With Multiple Models Using Different Wearable Sensors.
    Cvetkovic B; Milic R; Lustrek M
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1081-7. PubMed ID: 25974959
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.
    Lyden K; Kozey SL; Staudenmeyer JW; Freedson PS
    Eur J Appl Physiol; 2011 Feb; 111(2):187-201. PubMed ID: 20842375
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validity of uniaxial accelerometry during activities of daily living in children.
    Eisenmann JC; Strath SJ; Shadrick D; Rigsby P; Hirsch N; Jacobson L
    Eur J Appl Physiol; 2004 Mar; 91(2-3):259-63. PubMed ID: 14569402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparing ActiGraph equations for estimating energy expenditure in older adults.
    Aguilar-Farias N; Peeters GMEEG; Brychta RJ; Chen KY; Brown WJ
    J Sports Sci; 2019 Jan; 37(2):188-195. PubMed ID: 29912666
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validation of a body-worn accelerometer to measure activity patterns in octogenarians.
    Taylor LM; Klenk J; Maney AJ; Kerse N; Macdonald BM; Maddison R
    Arch Phys Med Rehabil; 2014 May; 95(5):930-4. PubMed ID: 24486241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions.
    Guidoux R; Duclos M; Fleury G; Lacomme P; Lamaudière N; Manenq PH; Paris L; Ren L; Rousset S
    J Biomed Inform; 2014 Dec; 52():271-8. PubMed ID: 25048352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal placement of accelerometers for the detection of everyday activities.
    Cleland I; Kikhia B; Nugent C; Boytsov A; Hallberg J; Synnes K; McClean S; Finlay D
    Sensors (Basel); 2013 Jul; 13(7):9183-200. PubMed ID: 23867744
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural network versus activity-specific prediction equations for energy expenditure estimation in children.
    Ruch N; Joss F; Jimmy G; Melzer K; Hänggi J; Mäder U
    J Appl Physiol (1985); 2013 Nov; 115(9):1229-36. PubMed ID: 23990244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Triaxial accelerometry for assessment of physical activity in young children.
    Tanaka C; Tanaka S; Kawahara J; Midorikawa T
    Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study.
    Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM
    JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting Chinese children and youth's energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study.
    Zhu Z; Chen P; Zhuang J
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S56-63. PubMed ID: 24527567
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measuring reliability and validity of the ActiGraph GT3X accelerometer for children with cerebral palsy: a feasibility study.
    O'Neil ME; Fragala-Pinkham MA; Forman JL; Trost SG
    J Pediatr Rehabil Med; 2014; 7(3):233-40. PubMed ID: 25260506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults.
    Abel MG; Hannon JC; Sell K; Lillie T; Conlin G; Anderson D
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1155-64. PubMed ID: 19088773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies.
    O'Driscoll R; Turicchi J; Beaulieu K; Scott S; Matu J; Deighton K; Finlayson G; Stubbs J
    Br J Sports Med; 2020 Mar; 54(6):332-340. PubMed ID: 30194221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mobile energy expenditure tracking system based on heart rate and motion providing extra extensions for personalized care.
    Chen HH; Chen YH; Chen TC; Chen LG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5256-9. PubMed ID: 22255523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.