These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24691654)

  • 1. Habitual vs non-habitual manual actions: an ERP study on overt movement execution.
    Westerholz J; Schack T; Schütz C; Koester D
    PLoS One; 2014; 9(4):e93116. PubMed ID: 24691654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The what-decision in manual action: ERPs for free choice versus specified overt goal-related grasping.
    Westerholz J; Schack T; Koester D
    Neurosci Lett; 2014 Jul; 575():85-90. PubMed ID: 24861512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event-related brain potentials for goal-related power grips.
    Westerholz J; Schack T; Koester D
    PLoS One; 2013; 8(7):e68501. PubMed ID: 23844211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinating Initial and Final Action Goals in Planning Grasp-to-Rotate Movements: An ERP Study.
    Yu L; Schack T; Koester D
    Neuroscience; 2021 Apr; 459():70-84. PubMed ID: 33548368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action Priority: Early Neurophysiological Interaction of Conceptual and Motor Representations.
    Koester D; Schack T
    PLoS One; 2016; 11(12):e0165882. PubMed ID: 27973539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials.
    van Schie HT; Bekkering H
    Brain Res; 2007 May; 1148():183-97. PubMed ID: 17412310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task complexity differentially affects executed and imagined movement preparation: evidence from movement-related potentials.
    Kranczioch C; Mathews S; Dean P; Sterr A
    PLoS One; 2010 Feb; 5(2):e9284. PubMed ID: 20174567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch negativity (MMN) to speech sounds is modulated systematically by manual grip execution.
    Tiainen M; Tiippana K; Paavilainen P; Vainio M; Vainio L
    Neurosci Lett; 2017 Jun; 651():237-241. PubMed ID: 28504120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online Movement Correction in Response to the Unexpectedly Perturbed Initial or Final Action Goals: An ERP and sLORETA Study.
    Yu L; Schack T; Koester D
    Brain Sci; 2021 May; 11(5):. PubMed ID: 34063437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habitual and goal-directed factors in (everyday) object handling.
    Herbort O; Butz MV
    Exp Brain Res; 2011 Sep; 213(4):371-82. PubMed ID: 21748333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation into manual asymmetries in grasp behavior and kinematics during an object manipulation task.
    Seegelke C; Hughes CM; Schack T
    Exp Brain Res; 2011 Nov; 215(1):65-75. PubMed ID: 21938544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.
    Vesia M; Barnett-Cowan M; Elahi B; Jegatheeswaran G; Isayama R; Neva JL; Davare M; Staines WR; Culham JC; Chen R
    Cortex; 2017 Jul; 92():175-186. PubMed ID: 28499145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.
    Gallivan JP; McLean DA; Flanagan JR; Culham JC
    J Neurosci; 2013 Jan; 33(5):1991-2008. PubMed ID: 23365237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for context sensitivity of grasp representations in human parietal and premotor cortices.
    Marangon M; Jacobs S; Frey SH
    J Neurophysiol; 2011 May; 105(5):2536-46. PubMed ID: 21367998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial-temporal dynamics of cortical activity underlying reaching and grasping.
    Virji-Babul N; Moiseev A; Cheung T; Weeks D; Cheyne D; Ribary U
    Hum Brain Mapp; 2010 Jan; 31(1):160-71. PubMed ID: 19593776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous action execution and observation optimise grasping actions.
    Ménoret M; Curie A; des Portes V; Nazir TA; Paulignan Y
    Exp Brain Res; 2013 Jun; 227(3):407-19. PubMed ID: 23615976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining ERPs and EEG spectral features for decoding intended movement direction.
    Li J; Wang Y; Zhang L; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1769-72. PubMed ID: 23366253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bilateral reach-to-grasp movement of Parkinson's disease subjects.
    Castiello U; Bennett KM
    Brain; 1997 Apr; 120 ( Pt 4)():593-604. PubMed ID: 9153122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of grasp stability during pronation and supination movements.
    Johansson RS; Backlin JL; Burstedt MK
    Exp Brain Res; 1999 Sep; 128(1-2):20-30. PubMed ID: 10473736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions.
    Copley-Mills J; Connolly JD; Cavina-Pratesi C
    Cortex; 2016 Sep; 82():244-254. PubMed ID: 27410715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.