BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24691681)

  • 21. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyst-based toxicity tests XIV--application of the ostracod solid-phase microbiotest for toxicity monitoring of river sediments in Flanders (Belgium).
    Chial B; Persoone G
    Environ Toxicol; 2002 Dec; 17(6):533-7. PubMed ID: 12448021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity.
    Verslycke T; Vangheluwe M; Heijerick D; De Schamphelaere K; Van Sprang P; Janssen CR
    Aquat Toxicol; 2003 Aug; 64(3):307-15. PubMed ID: 12842594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of chronic mixture toxicity of nickel-zinc-copper and nickel-zinc-copper-cadmium mixtures between Ceriodaphnia dubia and Pseudokirchneriella subcapitata.
    Nys C; Van Regenmortel T; Janssen CR; Blust R; Smolders E; De Schamphelaere KA
    Environ Toxicol Chem; 2017 Apr; 36(4):1056-1066. PubMed ID: 27669674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves.
    Traudt EM; Ranville JF; Smith SA; Meyer JS
    Environ Toxicol Chem; 2016 Jul; 35(7):1843-51. PubMed ID: 26681657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic ecotoxicity of mixtures of Cu, Zn, and Cd to the zebra mussel Dreissena polymorpha.
    Kraak MH; Schoon H; Peeters WH; van Straalen NM
    Ecotoxicol Environ Saf; 1993 Jun; 25(3):315-27. PubMed ID: 7691525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determining the Relative Importance of Dietborne and Waterborne Toxicity of 4-
    Gu Y; Tobino T; Nakajima F
    Environ Sci Technol; 2021 Jun; 55(12):7939-7948. PubMed ID: 34047553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interclonal variation of heavy metal interactions in Salix viminalis.
    Landberg T; Greger M
    Environ Toxicol Chem; 2002 Dec; 21(12):2669-74. PubMed ID: 12463563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mixture effects of copper, cadmium, and zinc on mortality and behavior of Caenorhabditis elegans.
    Moyson S; Vissenberg K; Fransen E; Blust R; Husson SJ
    Environ Toxicol Chem; 2018 Jan; 37(1):145-159. PubMed ID: 28786503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a chronic sediment toxicity test using the benthic ostracod Heterocypris incongruens and their application to toxicity assessments of urban road dust.
    Niyommaneerat W; Nakajima F; Tobino T; Yamamoto K
    Ecotoxicol Environ Saf; 2017 Sep; 143():266-274. PubMed ID: 28551584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers.
    Versieren L; Evers S; AbdElgawad H; Asard H; Smolders E
    Environ Toxicol Chem; 2017 Jan; 36(1):220-230. PubMed ID: 27311849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity of Metals to a Freshwater Ostracod: Stenocypris major.
    Shuhaimi-Othman M; Yakub N; Ramle NA; Abas A
    J Toxicol; 2011; 2011():136104. PubMed ID: 21559091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sediment-contact test using the ostracod Heterocypris incongruens: Effect of fine sediments and determination of toxicity thresholds.
    Casado-Martinez MC; Burga-Pérez KF; Bebon R; Férard JF; Vermeirssen EL; Werner I
    Chemosphere; 2016 May; 151():220-4. PubMed ID: 26943743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioavailability of sediment-associated Cu and Zn to Daphnia magna.
    Gillis PL; Wood CM; Ranville JF; Chow-Fraser P
    Aquat Toxicol; 2006 May; 77(4):402-11. PubMed ID: 16488492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential influences of Cu and Zn chronic exposure on Cd and Hg bioaccumulation in an estuarine oyster.
    Liu F; Wang WX
    Aquat Toxicol; 2014 Mar; 148():204-10. PubMed ID: 24509490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa).
    Laskowski R; Hopkin SP
    Ecotoxicol Environ Saf; 1996 Jun; 34(1):59-69. PubMed ID: 8793321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavioural and biochemical responses to metals tested alone or in mixture (Cd-Cu-Ni-Pb-Zn) in Gammarus fossarum: From a multi-biomarker approach to modelling metal mixture toxicity.
    Lebrun JD; Uher E; Fechner LC
    Aquat Toxicol; 2017 Dec; 193():160-167. PubMed ID: 29096089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc.
    Huang Z; Li L; Huang G; Yan Q; Shi B; Xu X
    Aquat Toxicol; 2009 Jan; 91(1):54-61. PubMed ID: 19019465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of chronic dietary and waterborne cadmium exposures on the contamination level and reproduction of Daphnia magna.
    Geffard O; Geffard A; Chaumot A; Vollat B; Alvarez C; Tusseau-Vuillemin MH; Garric J
    Environ Toxicol Chem; 2008 May; 27(5):1128-34. PubMed ID: 18419192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of acclimation and cross-acclimation of metals on acute Cd toxicity and Cd uptake and distribution in rainbow trout (Oncorhynchus mykiss).
    McGeer JC; Nadella S; Alsop DH; Hollis L; Taylor LN; McDonald DG; Wood CM
    Aquat Toxicol; 2007 Aug; 84(2):190-7. PubMed ID: 17673308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.