These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66. Counterflow rejection of adsorbing proteins for characterization of biomolecular interactions by temperature gradient focusing. Munson MS; Meacham JM; Locascio LE; Ross D Anal Chem; 2008 Jan; 80(1):172-8. PubMed ID: 18044962 [TBL] [Abstract][Full Text] [Related]
67. Long-term precision in capillary isoelectric focusing for protein analysis. Suratman A; Wätzig H J Sep Sci; 2008 Jun; 31(10):1834-40. PubMed ID: 18481326 [TBL] [Abstract][Full Text] [Related]
68. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: a gel-free multidimensional electrophoresis approach for proteomic profiling--exemplified on human follicular fluid. Hanrieder J; Zuberovic A; Bergquist J J Chromatogr A; 2009 Apr; 1216(17):3621-8. PubMed ID: 19155017 [TBL] [Abstract][Full Text] [Related]
69. Fractionation of complex protein mixtures by liquid-phase isoelectric focusing. Hey J; Posch A; Cohen A; Liu N; Harbers A Methods Mol Biol; 2008; 424():225-39. PubMed ID: 18369866 [TBL] [Abstract][Full Text] [Related]
70. Rapid high voltage isoelectric focusing of proteins in rod gels. Das J Biomed Chromatogr; 1991 Sep; 5(5):221-5. PubMed ID: 1660334 [TBL] [Abstract][Full Text] [Related]
71. Capillary electrophoresis as a second dimension to isoelectric focusing for peptide separation. Busnel JM; Lion N; Girault HH Anal Chem; 2007 Aug; 79(15):5949-55. PubMed ID: 17583968 [TBL] [Abstract][Full Text] [Related]
72. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device. Das C; Fan ZH Electrophoresis; 2006 Sep; 27(18):3619-26. PubMed ID: 16915565 [TBL] [Abstract][Full Text] [Related]
73. Isoelectric point-based prefractionation of proteins from crude biological samples prior to two-dimensional gel electrophoresis. Sahab ZJ; Suh Y; Sang QX J Proteome Res; 2005; 4(6):2266-72. PubMed ID: 16335975 [TBL] [Abstract][Full Text] [Related]
74. Tailoring orthogonal proteomic routines to understand protein separation during ion exchange chromatography. Cabrera R; Zhelyazkova P; Galvis L; Fernandez-Lahore M J Sep Sci; 2008 Jul; 31(13):2500-10. PubMed ID: 18646262 [TBL] [Abstract][Full Text] [Related]
75. No peptide left behind: the "out of range" recovery in IPG-IEF fractionation. Iori E; Rattazzi M; Millioni R Amino Acids; 2014 May; 46(5):1415-7. PubMed ID: 24615240 [TBL] [Abstract][Full Text] [Related]
76. At-line coupling of magnetic-nanoparticle-based extraction with gel isoelectric focusing for protein analysis. Dou P; Liu Z Anal Bioanal Chem; 2011 Apr; 399(10):3423-9. PubMed ID: 21116613 [TBL] [Abstract][Full Text] [Related]
77. Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. Macounová K; Cabrera CR; Yager P Anal Chem; 2001 Apr; 73(7):1627-33. PubMed ID: 11321320 [TBL] [Abstract][Full Text] [Related]
78. Isoelectric focusing of bovine serum albumin. Influence of binding of carrier ampholytes. Wallevik K Biochim Biophys Acta; 1973 Sep; 322(1):75-87. PubMed ID: 4795554 [No Abstract] [Full Text] [Related]
79. A Three-Dimensional Paper-Based Isoelectric Focusing Device for Direct Analysis of Proteins in Physiological Samples. Niu J; Bao Z; Wei Z; Li JX; Gao B; Jiang X; Li F Anal Chem; 2021 Mar; 93(8):3959-3967. PubMed ID: 33595273 [TBL] [Abstract][Full Text] [Related]
80. Charge-based separation of proteins and peptides by electrically induced dynamic pH profiles. Brod E; S Ben-Yosef V; Bandhakavi S; Sivan U J Chromatogr A; 2016 Jan; 1431():166-175. PubMed ID: 26768404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]