These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2469181)

  • 1. Cellular and molecular analysis of associative learning and memory in Hermissenda.
    Crow T
    Trends Neurosci; 1988 Apr; 11(4):136-47. PubMed ID: 2469181
    [No Abstract]   [Full Text] [Related]  

  • 2. In vitro associative conditioning of Hermissenda: cumulative depolarization of type B photoreceptors and short-term associative behavioral changes.
    Farley J; Alkon DL
    J Neurophysiol; 1987 Jun; 57(6):1639-68. PubMed ID: 3598626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged RNA changes in the Hermissenda eye induced by classical conditioning.
    Nelson TJ; Alkon DL
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7800-4. PubMed ID: 3174664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning-induced activation of protein kinase C. A molecular memory trace.
    Bank B; LoTurco JJ; Alkon DL
    Mol Neurobiol; 1989; 3(1-2):55-70. PubMed ID: 2679767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of associative learning in mammal and mollusc.
    Bank B; Nelson T; Alkon DL
    J Physiol (Paris); 1988-1989; 83(3):119-25. PubMed ID: 2483171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of an associative behavioral change in Hermissenda.
    Crow TJ; Alkon DL
    Science; 1978 Sep; 201(4362):1239-41. PubMed ID: 694512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extinction of associative learning in Hermissenda: behavior and neural correlates.
    Richards WG; Farley J; Alkon DL
    Behav Brain Res; 1984 Dec; 14(3):161-70. PubMed ID: 6525240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associative memory in three aplysiids: correlation with heterosynaptic modulation.
    Hoover BA; Nguyen H; Thompson L; Wright WG
    Learn Mem; 2006; 13(6):820-6. PubMed ID: 17142308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contingency learning and causal detection in Hermissenda: II. Cellular mechanisms.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):28-56. PubMed ID: 2435301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of genes related to learning and memory in the brain transcriptome of the mollusc, Hermissenda crassicornis.
    Tamvacakis AN; Senatore A; Katz PS
    Learn Mem; 2015 Dec; 22(12):617-21. PubMed ID: 26572652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis.
    Blackwell KT; Alkon DL
    Brain Res; 1999 Mar; 822(1-2):114-25. PubMed ID: 10082889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead, learning, and calexcitin in Hermissenda.
    Kuzirian AM; Epstein HT; Nelson TJ; Rafferty NS; Alkon DL
    Biol Bull; 1998 Oct; 195(2):198-201. PubMed ID: 9818368
    [No Abstract]   [Full Text] [Related]  

  • 13. Serotonin involvement during in vitro conditioning of Hermissenda.
    Grover LM; Farley J; Auerbach SB
    Brain Res Bull; 1989 Feb; 22(2):363-72. PubMed ID: 2706543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contingency learning and causal detection in Hermissenda: I. Behavior.
    Farley J
    Behav Neurosci; 1987 Feb; 101(1):13-27. PubMed ID: 3828050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Associative learning changes intrinsic to Hermissenda type A photoreceptors.
    Farley J; Richards WG; Grover LM
    Behav Neurosci; 1990 Feb; 104(1):135-52. PubMed ID: 2156519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of neurochemical modulation in learning.
    Alkon DL; Sakakibara M; Naito S; Heldman E; Lederhendler I
    Neurosci Res; 1986 Sep; 3(6):487-97. PubMed ID: 3534645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiological substrates of context conditioning in Hermissenda suggest a temporally invariant form of activity-dependent neuronal facilitation.
    Talk AC; Muzzio IA; Matzel LD
    Neurobiol Learn Mem; 1999 Sep; 72(2):95-117. PubMed ID: 10438650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular, cellular, and circuit mechanisms underlying classical conditioning in Hermissenda crassicornis.
    Blackwell KT
    Anat Rec B New Anat; 2006 Jan; 289(1):25-37. PubMed ID: 16437555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the neural substrates of associative learning and memory: a computational approach.
    Gluck MA; Thompson RF
    Psychol Rev; 1987 Apr; 94(2):176-91. PubMed ID: 3575584
    [No Abstract]   [Full Text] [Related]  

  • 20. Pavlovian conditioning-specific increases of the Ca2+- and GTP-binding protein, calexcitin in identified Hermissenda visual cells.
    Kuzirian AM; Epstein HT; Buck D; Child FM; Nelson T; Alkon DL
    J Neurocytol; 2001 Dec; 30(12):993-1008. PubMed ID: 12626881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.