These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24691855)

  • 1. Agro-climatic zoning of Jatropha curcas as a subside for crop planning and implementation in Brazil.
    Yamada ES; Sentelhas PC
    Int J Biometeorol; 2014 Nov; 58(9):1995-2010. PubMed ID: 24691855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Climatic suitability of spring maize planted in the "sickle bend" area of China and regulation suggestion].
    Mao LX; Zhao JF; Xu LL; Yan H; Li S; Li YF
    Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3935-3943. PubMed ID: 29704353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural networks in spatialization of meteorological elements and their application in the climatic agricultural zoning of bamboo.
    Aparecido LEO; Moraes JRDSC; Rolim GS; Martorano LG; Soares SDS; de Meneses KC; Costa CTS; Mesquita DZ; Barbosa AMDS; do Amaral EF; Bardales NG
    Int J Biometeorol; 2018 Nov; 62(11):1955-1962. PubMed ID: 30121896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate risk zoning for wheat crops in the southeastern region of Brazil.
    Aparecido LEO; Padua JMV; Torsoni GB; Barboza TOC; Viol LES; da Silva Cabral de Moraes JR; Dos Santos AF
    J Sci Food Agric; 2024 Jan; 104(1):456-467. PubMed ID: 37638491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recommendations for the regionalizing of coffee cultivation in Colombia: a methodological proposal based on agro-climatic indices.
    García L JC; Posada-Suárez H; Läderach P
    PLoS One; 2014; 9(12):e113510. PubMed ID: 25436456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate risk to peanut cultivation in Brazil across different planting seasons.
    de Oliveira Aparecido LE; Lorençone JA; Lorençone PA; de Meneses KC; da Silva Cabral de Moraes JR
    J Sci Food Agric; 2021 Sep; 101(12):5002-5015. PubMed ID: 33559883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the suitability of potato cultivation areas in South Korea based on climate and soil conditions.
    Shim JY; Jung JM; Lee WH
    Front Biosci (Landmark Ed); 2022 Feb; 27(2):70. PubMed ID: 35227013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jatropha curcas, a Novel Crop for Developing the Marginal Lands.
    Abobatta WF
    Methods Mol Biol; 2021; 2290():79-100. PubMed ID: 34009584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change could reduce and spatially reconfigure cocoa cultivation in the Brazilian Amazon by 2050.
    Igawa TK; Toledo PM; Anjos LJS
    PLoS One; 2022; 17(1):e0262729. PubMed ID: 35041710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle water footprints of nonfood biomass fuels in China.
    Zhang T; Xie X; Huang Z
    Environ Sci Technol; 2014 Apr; 48(7):4137-44. PubMed ID: 24400620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do climatic and management factors affect agricultural ecosystem services? A case study in the agro-pastoral transitional zone of northern China.
    Qiao J; Yu D; Wu J
    Sci Total Environ; 2018 Feb; 613-614():314-323. PubMed ID: 28917170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate zoning: identifying suitable regions for the occurrence of Alternaria Brown spot in tangerine trees in Brazil.
    Aparecido LEO; Torsoni GB; Lima RF; Baratti ACC; Rossi MFM; Dos Santos AF; Peche PM
    Pest Manag Sci; 2024 Mar; 80(3):1615-1631. PubMed ID: 37985580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of climate change on agro-climatic suitability of major food crops in Ghana.
    Chemura A; Schauberger B; Gornott C
    PLoS One; 2020; 15(6):e0229881. PubMed ID: 32598391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agroclimatic mapping for olive cultivation in Brazil: pinpointing optimal growing regions.
    de Oliveira Aparecido LE; Torsoni GB; de Lima RF; Mesquita DZ; Peche PM
    J Sci Food Agric; 2024 Apr; 104(6):3361-3370. PubMed ID: 38092559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing the climate data driven crop-modeling studies in the dry areas of Northern Syria and Lebanon: an important first step for assessing impact of future climate.
    Dixit PN; Telleria R
    Sci Total Environ; 2015 Apr; 511():562-75. PubMed ID: 25590537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salvadora persica agro-ecological suitability for oil production in Argentine dryland salinity.
    Falasca S; Pitta-Alvarez S; del Fresno CM
    Sci Total Environ; 2015 Dec; 538():844-54. PubMed ID: 26348151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production.
    Dias LA; Missio RF; Dias DC
    Genet Mol Res; 2012 Aug; 11(3):2719-28. PubMed ID: 22782638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations in climatic suitability and planting regionalization for potato in northern China under climate change.
    Zhao J; Zhan X; Jiang Y; Xu J
    PLoS One; 2018; 13(9):e0203538. PubMed ID: 30260968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying the AOGCM-AR5 models to the assessments of land suitability for walnut cultivation in response to climate change: A case study of Iran.
    Vahdati K; Massah Bavani AR; Khosh-Khui M; Fakour P; Sarikhani S
    PLoS One; 2019; 14(6):e0218725. PubMed ID: 31246980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variation in the populations of Polyphagotarsonemus latus and Tetranychus bastosi in physic nut (Jatropha curcas) plantations.
    Rosado JF; Picanço MC; Sarmento RA; da Silva RS; Pedro-Neto M; Carvalho MA; Erasmo EA; Silva LC
    Exp Appl Acarol; 2015 Jul; 66(3):415-26. PubMed ID: 25910991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.