BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24691941)

  • 21. Lamellar self-assemblies of single-chain amphiphiles and sterols and their derived liposomes: distinct compositions and distinct properties.
    Cui ZK; Lafleur M
    Colloids Surf B Biointerfaces; 2014 Feb; 114():177-85. PubMed ID: 24184913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study.
    Cournia Z; Ullmann GM; Smith JC
    J Phys Chem B; 2007 Feb; 111(7):1786-801. PubMed ID: 17261058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-dimensional 1H-13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states.
    Holland GP; Alam TM
    J Magn Reson; 2006 Aug; 181(2):316-26. PubMed ID: 16798032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PRODAN Photophysics as a Tool to Determine the Bilayer Properties of Different Unilamellar Vesicles Composed of Phospholipids.
    Luna MA; Girardi VR; Sánchez-Cerviño MC; Rivero G; Falcone RD; Moyano F; Correa NM
    Langmuir; 2024 Jan; 40(1):657-667. PubMed ID: 38100549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
    Hsieh CJ; Chen YW; Hwang DW
    Phys Chem Chem Phys; 2013 Oct; 15(39):16634-40. PubMed ID: 23965762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining ethanol distribution in phospholipid multilayers with MAS-NOESY spectra.
    Holte LL; Gawrisch K
    Biochemistry; 1997 Apr; 36(15):4669-74. PubMed ID: 9109678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing membrane topology by high-resolution 1H-13C heteronuclear dipolar solid-state NMR spectroscopy.
    Lu JX; Damodaran K; Lorigan GA
    J Magn Reson; 2006 Feb; 178(2):283-7. PubMed ID: 16275029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane properties of cholesterol analogs with an unbranched aliphatic side chain.
    Meyer T; Baek DJ; Bittman R; Haralampiev I; Müller P; Herrmann A; Huster D; Scheidt HA
    Chem Phys Lipids; 2014 Dec; 184():1-6. PubMed ID: 25173446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct interaction between amphotericin B and ergosterol in lipid bilayers as revealed by 2H NMR spectroscopy.
    Matsumori N; Tahara K; Yamamoto H; Morooka A; Doi M; Oishi T; Murata M
    J Am Chem Soc; 2009 Aug; 131(33):11855-60. PubMed ID: 19645473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces.
    Liu KW; Biswal SL
    Anal Chem; 2010 Sep; 82(18):7527-32. PubMed ID: 20726504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the liquid-ordered state by proton MAS NMR.
    Polozov IV; Gawrisch K
    Biophys J; 2006 Mar; 90(6):2051-61. PubMed ID: 16387785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of variations in phospholipid and sterol structure on the nature of lipid-sterol interactions in lipid bilayer model membranes.
    Mannock DA; Lewis RN; McMullen TP; McElhaney RN
    Chem Phys Lipids; 2010 Jun; 163(6):403-48. PubMed ID: 20371224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulation of oleic acid/oleate bilayers: an atomistic model for a ufasome membrane.
    Han S
    Chem Phys Lipids; 2013; 175-176():79-83. PubMed ID: 23994553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity.
    Henriksen J; Rowat AC; Ipsen JH
    Eur Biophys J; 2004 Dec; 33(8):732-41. PubMed ID: 15221234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra.
    Schröder L; Schmitz C; Bachert P
    J Magn Reson; 2004 Dec; 171(2):213-24. PubMed ID: 15546747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating fatty acids inserted into magnetically aligned phospholipid bilayers using EPR and solid-state NMR spectroscopy.
    Nusair NA; Tiburu EK; Dave PC; Lorigan GA
    J Magn Reson; 2004 Jun; 168(2):228-37. PubMed ID: 15140432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The efficacies of cell-penetrating peptides in accumulating in large unilamellar vesicles depend on their ability to form inverted micelles.
    Swiecicki JM; Bartsch A; Tailhades J; Di Pisa M; Heller B; Chassaing G; Mansuy C; Burlina F; Lavielle S
    Chembiochem; 2014 Apr; 15(6):884-91. PubMed ID: 24677480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.