These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24691975)

  • 1. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles.
    Palmal S; Maity AR; Singh BK; Basu S; Jana NR; Jana NR
    Chemistry; 2014 May; 20(20):6184-91. PubMed ID: 24691975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity.
    Liao YH; Chang YJ; Yoshiike Y; Chang YC; Chen YR
    Small; 2012 Dec; 8(23):3631-9. PubMed ID: 22915547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template-assisted lateral growth of amyloid-β42 fibrils studied by differential labeling with gold nanoparticles.
    Arimon M; Sanz F; Giralt E; Carulla N
    Bioconjug Chem; 2012 Jan; 23(1):27-32. PubMed ID: 22129071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state NMR analysis of interaction sites of curcumin and 42-residue amyloid β-protein fibrils.
    Masuda Y; Fukuchi M; Yatagawa T; Tada M; Takeda K; Irie K; Akagi K; Monobe Y; Imazawa T; Takegoshi K
    Bioorg Med Chem; 2011 Oct; 19(20):5967-74. PubMed ID: 21924918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curcuminoid binds to amyloid-β1-42 oligomer and fibril.
    Yanagisawa D; Taguchi H; Yamamoto A; Shirai N; Hirao K; Tooyama I
    J Alzheimers Dis; 2011; 24 Suppl 2():33-42. PubMed ID: 21335654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Role of Gold Nanorods: Inhibition and Dissolution of Aβ Fibrils Induced by Near IR Laser.
    Sudhakar S; Santhosh PB; Mani E
    ACS Chem Neurosci; 2017 Oct; 8(10):2325-2334. PubMed ID: 28737894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticles as amyloid-like fibrillogenesis inhibitors.
    Hsieh S; Chang CW; Chou HH
    Colloids Surf B Biointerfaces; 2013 Dec; 112():525-9. PubMed ID: 24060166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curcumin Inhibits the Primary Nucleation of Amyloid-Beta Peptide: A Molecular Dynamics Study.
    Doytchinova I; Atanasova M; Salamanova E; Ivanov S; Dimitrov I
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32942739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates.
    Martins PA; Alsaiari S; Julfakyan K; Nie Z; Khashab NM
    Chem Commun (Camb); 2017 Feb; 53(13):2102-2105. PubMed ID: 28098266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic peptides as inhibitors of amyloid fibrillation.
    Luo J; Abrahams JP
    Chemistry; 2014 Feb; 20(9):2410-9. PubMed ID: 24478167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional cysteine gold nanoclusters for β-amyloid fibril inhibition and fluorescence imaging: a distinctive approach to manage Alzheimer's disease.
    Resmi AN; Rekha CR; Dhushyandhun ME; Elangovan S; Shenoy SJ; Gulia KK; Jayasree RS
    J Mater Chem B; 2023 May; 11(21):4715-4724. PubMed ID: 37171084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CLVFFA-Functionalized Gold Nanoclusters Inhibit Aβ40 Fibrillation, Fibrils' Prolongation, and Mature Fibrils' Disaggregation.
    Hao S; Li X; Han A; Yang Y; Fang G; Liu J; Wang S
    ACS Chem Neurosci; 2019 Nov; 10(11):4633-4642. PubMed ID: 31637909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Au nanoparticles on the aggregation of amyloid-β-(25-35) peptides.
    Ma Q; Wei G; Yang X
    Nanoscale; 2013 Nov; 5(21):10397-403. PubMed ID: 24056949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomeric Effect of Nano-Inhibitors on Aβ
    Li J; Gao G; Tang X; Yu M; He M; Sun T
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4894-4904. PubMed ID: 33486955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of maghemite nanoparticles on insulin amyloid fibril formation: selective labeling, kinetics, and fibril removal by a magnetic field.
    Skaat H; Sorci M; Belfort G; Margel S
    J Biomed Mater Res A; 2009 Nov; 91(2):342-51. PubMed ID: 18980178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of curcumin-loaded polymeric nanomicelles to interference with amyloidogenesis through glycation method.
    Mirzaie Z; Ansari M; Kordestani SS; Rezaei MH; Mozafari M
    Biotechnol Appl Biochem; 2019 Jul; 66(4):537-544. PubMed ID: 30993734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid-like fibril formation by tachykinin neuropeptides and its relevance to amyloid β-protein aggregation and toxicity.
    Singh PK; Maji SK
    Cell Biochem Biophys; 2012 Sep; 64(1):29-44. PubMed ID: 22628076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Cu-amyloid-β by using bifunctional peptides with β-sheet breaker and chelator moieties.
    Jensen M; Canning A; Chiha S; Bouquerel P; Pedersen JT; Østergaard J; Cuvillier O; Sasaki I; Hureau C; Faller P
    Chemistry; 2012 Apr; 18(16):4836-9. PubMed ID: 22422637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.