These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24692017)

  • 1. Chemical methods and approaches to the regioselective formation of multiple disulfide bonds.
    Shimamoto S; Katayama H; Okumura M; Hidaka Y
    Curr Protoc Protein Sci; 2014 Apr; 76():28.8.1-28.8.28. PubMed ID: 24692017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding of peptides and proteins: role of disulfide bonds, recent developments.
    Hidaka Y; Shimamoto S
    Biomol Concepts; 2013 Dec; 4(6):597-604. PubMed ID: 25436759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of the regulation of disulfide bond formation in Peptide and protein folding.
    Hidaka Y
    Curr Protoc Protein Sci; 2014 Apr; 76():28.6.1-28.6.6. PubMed ID: 24692015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemical method for investigating disulfide-coupled peptide and protein folding.
    Okumura M; Shimamoto S; Hidaka Y
    FEBS J; 2012 Jul; 279(13):2283-95. PubMed ID: 22487262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin.
    Shimamoto S; Fukutsuji M; Osumi T; Goto M; Toyoda H; Hidaka Y
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33096591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Formation of Native Disulfide Bonds: Treading a Fine Line in Protein Folding.
    Narayan M
    Protein J; 2021 Apr; 40(2):134-139. PubMed ID: 33765253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation.
    Okumura M; Shimamoto S; Hidaka Y
    Curr Protoc Protein Sci; 2014 Apr; 76():28.7.1-28.7.13. PubMed ID: 24692016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Oxidative refolding of proteins].
    Zhang YY; Yang KY
    Sheng Wu Gong Cheng Xue Bao; 2003 Jan; 19(1):1-8. PubMed ID: 15969027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical synthesis of per-selenocysteine human epidermal growth factor.
    Takei T; Tanaka H; Okumura N; Takao T; Moroder L; Hojo H
    J Pept Sci; 2023 May; 29(5):e3464. PubMed ID: 36459408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The disulfide-coupled folding pathway of apamin as derived from diselenide-quenched analogs and intermediates.
    Pegoraro S; Fiori S; Cramer J; Rudolph-Böhner S; Moroder L
    Protein Sci; 1999 Aug; 8(8):1605-13. PubMed ID: 10452604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein folding guides disulfide bond formation.
    Qin M; Wang W; Thirumalai D
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11241-6. PubMed ID: 26297249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the Disulfide Bonds of Folding Isomers of Synthetic CTX A3 Polypeptide Using MS-Based Technology.
    Huang SY; Wei TY; Liu BS; Lin MH; Chiang SK; Chen SF; Sung WC
    Toxins (Basel); 2019 Jan; 11(1):. PubMed ID: 30658470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated oxidative folding of cysteine/selenocysteine containing peptides: improving chemical synthesis of conotoxins.
    Walewska A; Zhang MM; Skalicky JJ; Yoshikami D; Olivera BM; Bulaj G
    Angew Chem Int Ed Engl; 2009; 48(12):2221-4. PubMed ID: 19206132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of disulfide bonds in proteins and peptides.
    Bulaj G
    Biotechnol Adv; 2005 Jan; 23(1):87-92. PubMed ID: 15610970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular disulfide bond formation in bioactive peptides and proteins.
    Patil NA; Tailhades J; Hughes RA; Separovic F; Wade JD; Hossain MA
    Int J Mol Sci; 2015 Jan; 16(1):1791-805. PubMed ID: 25594871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding.
    Rehder DS; Borges CR
    Biochemistry; 2010 Sep; 49(35):7748-55. PubMed ID: 20712299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting a role of evolutionary-conserved but noncritical disulfide bridges in cysteine-rich peptides using ω-conotoxin GVIA and its selenocysteine analogs.
    Gowd KH; Blais KD; Elmslie KS; Steiner AM; Olivera BM; Bulaj G
    Biopolymers; 2012; 98(3):212-23. PubMed ID: 22782563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide models of four possible insulin folding intermediates with two disulfides.
    Jia XY; Guo ZY; Wang Y; Xu Y; Duan SS; Feng YM
    Protein Sci; 2003 Nov; 12(11):2412-9. PubMed ID: 14573855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Disulfide Bonds and Topological Frustration in the Kinetic Partitioning of Lysozyme Folding Pathways.
    Muttathukattil AN; Singh PC; Reddy G
    J Phys Chem B; 2019 Apr; 123(15):3232-3241. PubMed ID: 30913878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting the competition between the intramolecular Reshuffling reaction and the direct oxidation reaction during the oxidative folding of kinetically trapped disulfide-insecure intermediates.
    Narayan M; Welker E; Wanjalla C; Xu G; Scheraga HA
    Biochemistry; 2003 Sep; 42(36):10783-9. PubMed ID: 12962503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.