These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24692147)

  • 1. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.
    Zhu G; Zhou YS; Bai P; Meng XS; Jing Q; Chen J; Wang ZL
    Adv Mater; 2014 Jun; 26(23):3788-96. PubMed ID: 24692147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cylindrical rotating triboelectric nanogenerator.
    Bai P; Zhu G; Liu Y; Chen J; Jing Q; Yang W; Ma J; Zhang G; Wang ZL
    ACS Nano; 2013 Jul; 7(7):6361-6. PubMed ID: 23799926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion.
    Jing Q; Zhu G; Bai P; Xie Y; Chen J; Han RP; Wang ZL
    ACS Nano; 2014 Apr; 8(4):3836-42. PubMed ID: 24601567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-solution-processed flexible thin film piezoelectric nanogenerator.
    Chung SY; Kim S; Lee JH; Kim K; Kim SW; Kang CY; Yoon SJ; Kim YS
    Adv Mater; 2012 Nov; 24(45):6022-7. PubMed ID: 23008152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes.
    Wang S; Xie Y; Niu S; Lin L; Wang ZL
    Adv Mater; 2014 May; 26(18):2818-24. PubMed ID: 24449058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions.
    Bai P; Zhu G; Lin ZH; Jing Q; Chen J; Zhang G; Ma J; Wang ZL
    ACS Nano; 2013 Apr; 7(4):3713-9. PubMed ID: 23484470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloth-Based Power Shirt for Wearable Energy Harvesting and Clothes Ornamentation.
    Li S; Zhong Q; Zhong J; Cheng X; Wang B; Hu B; Zhou J
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14912-6. PubMed ID: 26098265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High output achieved by sliding electrification of an electrospun nano-grating.
    Zhou LN; Wu JP; Song WZ; Wang XX; Wang N; Yu M; Fan ZY; Ramakrishna S; Long YZ
    Nanoscale; 2021 Oct; 13(41):17417-17427. PubMed ID: 34647562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics.
    Wang S; Lin L; Wang ZL
    Nano Lett; 2012 Dec; 12(12):6339-46. PubMed ID: 23130843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator.
    Zhang C; Tang W; Pang Y; Han C; Wang ZL
    Adv Mater; 2015 Jan; 27(4):719-26. PubMed ID: 25430051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harvesting energy from the natural vibration of human walking.
    Yang W; Chen J; Zhu G; Yang J; Bai P; Su Y; Jing Q; Cao X; Wang ZL
    ACS Nano; 2013 Dec; 7(12):11317-24. PubMed ID: 24180642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabric-based integrated energy devices for wearable activity monitors.
    Jung S; Lee J; Hyeon T; Lee M; Kim DH
    Adv Mater; 2014 Sep; 26(36):6329-34. PubMed ID: 25070873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-Assisted β-phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices.
    Tamang A; Ghosh SK; Garain S; Alam MM; Haeberle J; Henkel K; Schmeisser D; Mandal D
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16143-7. PubMed ID: 26189605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.
    Fan FR; Lin L; Zhu G; Wu W; Zhang R; Wang ZL
    Nano Lett; 2012 Jun; 12(6):3109-14. PubMed ID: 22577731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.
    Zhang L; Oh SR; Wong TC; Tan CY; Yao K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2013-20. PubMed ID: 24658732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers.
    Yang Z; Yang J; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2493-501. PubMed ID: 19049929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.
    Hwang GT; Park H; Lee JH; Oh S; Park KI; Byun M; Park H; Ahn G; Jeong CK; No K; Kwon H; Lee SG; Joung B; Lee KJ
    Adv Mater; 2014 Jul; 26(28):4880-7. PubMed ID: 24740465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radial-arrayed rotary electrification for high performance triboelectric generator.
    Zhu G; Chen J; Zhang T; Jing Q; Wang ZL
    Nat Commun; 2014 Mar; 5():3426. PubMed ID: 24594501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%.
    Lin L; Xie Y; Niu S; Wang S; Yang PK; Wang ZL
    ACS Nano; 2015 Jan; 9(1):922-30. PubMed ID: 25555045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.