These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24692256)

  • 1. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research.
    Seitz LC; Chen Z; Forman AJ; Pinaud BA; Benck JD; Jaramillo TF
    ChemSusChem; 2014 May; 7(5):1372-85. PubMed ID: 24692256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical hydrogen production from biomass derivatives and water.
    Lu X; Xie S; Yang H; Tong Y; Ji H
    Chem Soc Rev; 2014 Nov; 43(22):7581-93. PubMed ID: 24599050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
    Sivula K
    Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.
    Shi X; Cai L; Ma M; Zheng X; Park JH
    ChemSusChem; 2015 Oct; 8(19):3192-203. PubMed ID: 26365789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances.
    Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.
    Zhang X; Bieberle-Hütter A
    ChemSusChem; 2016 Jun; 9(11):1223-42. PubMed ID: 27219662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation.
    Modestino MA; Haussener S
    Annu Rev Chem Biomol Eng; 2015; 6():13-34. PubMed ID: 26083057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting.
    Dos Santos WS; Rodriguez M; Afonso AS; Mesquita JP; Nascimento LL; Patrocínio AO; Silva AC; Oliveira LC; Fabris JD; Pereira MC
    Sci Rep; 2016 Aug; 6():31406. PubMed ID: 27503274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.
    Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH
    ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron based photoanodes for solar fuel production.
    Bassi PS; Gurudayal ; Wong LH; Barber J
    Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.