These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 24692285)
1. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition. Jeon JO; Lee KD; Seul Oh L; Seo SW; Lee DK; Kim H; Jeong JH; Ko MJ; Kim B; Son HJ; Kim JY ChemSusChem; 2014 Apr; 7(4):1073-7. PubMed ID: 24692285 [TBL] [Abstract][Full Text] [Related]
2. Compositional and Interfacial Modification of Cu2 ZnSn(S,Se)4 Thin-Film Solar Cells Prepared by Electrochemical Deposition. Seo SW; Jeon JO; Seo JW; Yu YY; Jeong JH; Lee DK; Kim H; Ko MJ; Son HJ; Jang HW; Kim JY ChemSusChem; 2016 Mar; 9(5):439-44. PubMed ID: 26822494 [TBL] [Abstract][Full Text] [Related]
4. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure. Yao L; Ao J; Jeng MJ; Bi J; Gao S; He Q; Zhou Z; Sun G; Sun Y; Chang LB; Chen JW Nanoscale Res Lett; 2014; 9(1):678. PubMed ID: 25593559 [TBL] [Abstract][Full Text] [Related]
5. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493 [TBL] [Abstract][Full Text] [Related]
6. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells. Dong H; Quintilla A; Cemernjak M; Popescu R; Gerthsen D; Ahlswede E; Feldmann C J Colloid Interface Sci; 2014 Feb; 415():103-10. PubMed ID: 24267336 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of CuInS2 films from electrodeposited Cu/In bilayers: effects of preheat treatment on their structural, photoelectrochemical and solar cell properties. Lee SM; Ikeda S; Yagi T; Harada T; Ennaoui A; Matsumura M Phys Chem Chem Phys; 2011 Apr; 13(14):6662-9. PubMed ID: 21384000 [TBL] [Abstract][Full Text] [Related]
8. Impact of Precursor Compositions on the Structural and Photovoltaic Properties of Spray-Deposited Cu2 ZnSnS4 Thin Films. Nguyen TH; Fujikawa S; Harada T; Chantana J; Minemoto T; Nakanishi S; Ikeda S ChemSusChem; 2016 Sep; 9(17):2414-20. PubMed ID: 27514989 [TBL] [Abstract][Full Text] [Related]
9. Cu Lai FI; Yang JF; Chen WC; Kuo SY ACS Appl Mater Interfaces; 2017 Nov; 9(46):40224-40234. PubMed ID: 29072439 [TBL] [Abstract][Full Text] [Related]
10. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency. Ahn S; Choi YJ; Kim K; Eo YJ; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Yoon K ChemSusChem; 2013 Jul; 6(7):1282-7. PubMed ID: 23681958 [TBL] [Abstract][Full Text] [Related]
12. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Chen S; Walsh A; Gong XG; Wei SH Adv Mater; 2013 Mar; 25(11):1522-39. PubMed ID: 23401176 [TBL] [Abstract][Full Text] [Related]
13. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution. Ahn S; Son TH; Cho A; Gwak J; Yun JH; Shin K; Ahn SK; Park SH; Yoon K ChemSusChem; 2012 Sep; 5(9):1773-7. PubMed ID: 22890958 [TBL] [Abstract][Full Text] [Related]
14. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency. Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738 [TBL] [Abstract][Full Text] [Related]
15. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe₂ Film during Selenization in Se+SnSe Vapor. Yao L; Ao J; Jeng MJ; Bi J; Gao S; Sun G; He Q; Zhou Z; Sun Y; Chang LB Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773366 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and Nanostructures of Metal Selenide Precursors for Cu(In,Ga)Se2 Thin-Film Solar Cells. Cha JH; Noh SJ; Jung DY ChemSusChem; 2015 Jul; 8(14):2407-13. PubMed ID: 25959012 [TBL] [Abstract][Full Text] [Related]
17. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer. Zhang Z; Yao L; Zhang Y; Ao J; Bi J; Gao S; Gao Q; Jeng MJ; Sun G; Zhou Z; He Q; Sun Y Adv Sci (Weinh); 2018 Feb; 5(2):1700645. PubMed ID: 29610727 [TBL] [Abstract][Full Text] [Related]
18. Influence of Ligands on the Formation of Kesterite Thin Films for Solar Cells: A Comparative Study. Huang TJ; Yin X; Tang C; Qi G; Gong H ChemSusChem; 2016 May; 9(9):1032-41. PubMed ID: 27059551 [TBL] [Abstract][Full Text] [Related]
19. Study of band structure at the Zn(S,O,OH)/Cu(In,Ga)Se2 interface via rapid thermal annealing and their effect on the photovoltaic properties. Shin DH; Kim ST; Kim JH; Kang HJ; Ahn BT; Kwon H ACS Appl Mater Interfaces; 2013 Dec; 5(24):12921-7. PubMed ID: 24175717 [TBL] [Abstract][Full Text] [Related]
20. Influence of composition on the performance of sintered Cu(In,Ga)Se2 nanocrystal thin-film photovoltaic devices. Akhavan VA; Harvey TB; Stolle CJ; Ostrowski DP; Glaz MS; Goodfellow BW; Panthani MG; Reid DK; Vanden Bout DA; Korgel BA ChemSusChem; 2013 Mar; 6(3):481-6. PubMed ID: 23401465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]