These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24692498)

  • 1. In vivo two-photon calcium imaging in the visual system.
    Ohki K; Reid RC
    Cold Spring Harb Protoc; 2014 Apr; 2014(4):402-16. PubMed ID: 24692498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic calcium imaging of neurons in the mouse visual cortex using a troponin C-based indicator.
    Santos AF; Hübener M
    Cold Spring Harb Protoc; 2014 May; 2014(5):. PubMed ID: 24786511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex.
    Ohki K; Chung S; Ch'ng YH; Kara P; Reid RC
    Nature; 2005 Feb; 433(7026):597-603. PubMed ID: 15660108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genetically encoded calcium indicator for chronic in vivo two-photon imaging.
    Mank M; Santos AF; Direnberger S; Mrsic-Flogel TD; Hofer SB; Stein V; Hendel T; Reiff DF; Levelt C; Borst A; Bonhoeffer T; Hübener M; Griesbeck O
    Nat Methods; 2008 Sep; 5(9):805-11. PubMed ID: 19160515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving AM ester calcium dye loading efficiency.
    Hamad MI; Krause M; Wahle P
    J Neurosci Methods; 2015 Jan; 240():48-60. PubMed ID: 25448382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Two-Photon Imaging In Vivo with a Red-Shifted Calcium Indicator.
    Birkner A; Konnerth A
    Methods Mol Biol; 2019; 1929():15-26. PubMed ID: 30710264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loose-patch-juxtacellular recording in vivo--a method for functional characterization and labeling of neurons in macaque V1.
    Joshi S; Hawken MJ
    J Neurosci Methods; 2006 Sep; 156(1-2):37-49. PubMed ID: 16540174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS).
    Song A; Charles AS; Koay SA; Gauthier JL; Thiberge SY; Pillow JW; Tank DW
    Nat Methods; 2017 Apr; 14(4):420-426. PubMed ID: 28319111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.
    Omer DB; Hildesheim R; Grinvald A
    Neuroimage; 2013 Nov; 82():237-51. PubMed ID: 23689017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous imaging of structural plasticity and calcium dynamics in developing dendrites and axons.
    Siegel F; Lohmann C
    Cold Spring Harb Protoc; 2013 Nov; 2013(11):. PubMed ID: 24184764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo two-photon calcium imaging of neuronal networks.
    Stosiek C; Garaschuk O; Holthoff K; Konnerth A
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7319-24. PubMed ID: 12777621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat.
    Huang L; Shou T; Chen X; Yu H; Sun C; Liang Z
    Neuroimage; 2006 Sep; 32(3):1365-74. PubMed ID: 16798018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossmodal audio-visual interactions in the primary visual cortex of the visually deprived cat: a physiological and anatomical study.
    Sanchez-Vives MV; Nowak LG; Descalzo VF; Garcia-Velasco JV; Gallego R; Berbel P
    Prog Brain Res; 2006; 155():287-311. PubMed ID: 17027395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise alignment of micromachined electrode arrays with V1 functional maps.
    Nauhaus I; Ringach DL
    J Neurophysiol; 2007 May; 97(5):3781-9. PubMed ID: 17344376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparseness of coding in area 17 of the cat visual cortex: a comparison between pinwheel centres and orientation domains.
    Jayakumar J; Hu D; Vidyasagar TR
    Neuroscience; 2012 Dec; 225():55-64. PubMed ID: 22963796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single thalamic neurons project to both lateral suprasylvian visual cortex and area 17: a retrograde fluorescent double-labeling study.
    Tong L; Spear PD
    J Comp Neurol; 1986 Apr; 246(2):254-64. PubMed ID: 3958252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly ordered arrangement of single neurons in orientation pinwheels.
    Ohki K; Chung S; Kara P; Hübener M; Bonhoeffer T; Reid RC
    Nature; 2006 Aug; 442(7105):925-8. PubMed ID: 16906137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking miniaturized microscopy against two-photon calcium imaging using single-cell orientation tuning in mouse visual cortex.
    Glas A; Hübener M; Bonhoeffer T; Goltstein PM
    PLoS One; 2019; 14(4):e0214954. PubMed ID: 30947245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical monitoring of brain function in vivo: from neurons to networks.
    Garaschuk O; Milos RI; Grienberger C; Marandi N; Adelsberger H; Konnerth A
    Pflugers Arch; 2006 Dec; 453(3):385-96. PubMed ID: 17047983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex.
    Schummers J; Yu H; Sur M
    Science; 2008 Jun; 320(5883):1638-43. PubMed ID: 18566287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.