These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 24692550)
1. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. Tonin Y; Heckel AM; Vysokikh M; Dovydenko I; Meschaninova M; Rötig A; Munnich A; Venyaminova A; Tarassov I; Entelis N J Biol Chem; 2014 May; 289(19):13323-34. PubMed ID: 24692550 [TBL] [Abstract][Full Text] [Related]
2. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Tonin Y; Heckel AM; Dovydenko I; Meschaninova M; Comte C; Venyaminova A; Pyshnyi D; Tarassov I; Entelis N Biochimie; 2014 May; 100():192-9. PubMed ID: 23994754 [TBL] [Abstract][Full Text] [Related]
3. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Hashimoto M; Bacman SR; Peralta S; Falk MJ; Chomyn A; Chan DC; Williams SL; Moraes CT Mol Ther; 2015 Oct; 23(10):1592-9. PubMed ID: 26159306 [TBL] [Abstract][Full Text] [Related]
4. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. Loutre R; Heckel AM; Jeandard D; Tarassov I; Entelis N PLoS One; 2018; 13(6):e0199258. PubMed ID: 29912984 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. Gammage PA; Rorbach J; Vincent AI; Rebar EJ; Minczuk M EMBO Mol Med; 2014 Apr; 6(4):458-66. PubMed ID: 24567072 [TBL] [Abstract][Full Text] [Related]
6. [Mitochondrial DNA diseases and therapeutic strategies]. Tonin Y; Entelis N Med Sci (Paris); 2014 Dec; 30(12):1101-9. PubMed ID: 25537040 [TBL] [Abstract][Full Text] [Related]
7. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Bayona-Bafaluy MP; Blits B; Battersby BJ; Shoubridge EA; Moraes CT Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14392-7. PubMed ID: 16179392 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Comte C; Tonin Y; Heckel-Mager AM; Boucheham A; Smirnov A; Auré K; Lombès A; Martin RP; Entelis N; Tarassov I Nucleic Acids Res; 2013 Jan; 41(1):418-33. PubMed ID: 23087375 [TBL] [Abstract][Full Text] [Related]
9. Fatal manifestation of a de novo ND5 mutation: Insights into the pathogenetic mechanisms of mtDNA ND5 gene defects. Zhadanov SI; Grechanina EY; Grechanina YB; Gusar VA; Fedoseeva NP; Lebon S; Münnich A; Schurr TG Mitochondrion; 2007 Jul; 7(4):260-6. PubMed ID: 17317336 [TBL] [Abstract][Full Text] [Related]
10. A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations. Möllers M; Maniura-Weber K; Kiseljakovic E; Bust M; Hayrapetyan A; Jaksch M; Helm M; Wiesner RJ; von Kleist-Retzow JC Nucleic Acids Res; 2005; 33(17):5647-58. PubMed ID: 16199753 [TBL] [Abstract][Full Text] [Related]
11. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Park JS; Sharma LK; Li H; Xiang R; Holstein D; Wu J; Lechleiter J; Naylor SL; Deng JJ; Lu J; Bai Y Hum Mol Genet; 2009 May; 18(9):1578-89. PubMed ID: 19208652 [TBL] [Abstract][Full Text] [Related]
12. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Suen DF; Narendra DP; Tanaka A; Manfredi G; Youle RJ Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11835-40. PubMed ID: 20547844 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. Nissanka N; Moraes CT EMBO Rep; 2020 Mar; 21(3):e49612. PubMed ID: 32073748 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the ND5 subunit of complex I of the mitochondrial DNA are a frequent cause of oxidative phosphorylation disease. Blok MJ; Spruijt L; de Coo IF; Schoonderwoerd K; Hendrickx A; Smeets HJ J Med Genet; 2007 Apr; 44(4):e74. PubMed ID: 17400793 [TBL] [Abstract][Full Text] [Related]
15. Strategies for treating disorders of the mitochondrial genome. Smith PM; Ross GF; Taylor RW; Turnbull DM; Lightowlers RN Biochim Biophys Acta; 2004 Dec; 1659(2-3):232-9. PubMed ID: 15576056 [TBL] [Abstract][Full Text] [Related]
16. [MITO-Porter; a cutting-edge technology for mitochondrial gene therapy]. Furukawa R; Yamada Y; Harashima H Yakugaku Zasshi; 2012; 132(12):1389-98. PubMed ID: 23208046 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Zekonyte U; Bacman SR; Smith J; Shoop W; Pereira CV; Tomberlin G; Stewart J; Jantz D; Moraes CT Nat Commun; 2021 May; 12(1):3210. PubMed ID: 34050192 [TBL] [Abstract][Full Text] [Related]
18. Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion. Hakonen AH; Goffart S; Marjavaara S; Paetau A; Cooper H; Mattila K; Lampinen M; Sajantila A; Lönnqvist T; Spelbrink JN; Suomalainen A Hum Mol Genet; 2008 Dec; 17(23):3822-35. PubMed ID: 18775955 [TBL] [Abstract][Full Text] [Related]
19. Can Mitochondrial DNA be CRISPRized: Pro and Contra. Loutre R; Heckel AM; Smirnova A; Entelis N; Tarassov I IUBMB Life; 2018 Dec; 70(12):1233-1239. PubMed ID: 30184317 [TBL] [Abstract][Full Text] [Related]