BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24692594)

  • 21. A cell biologist's guide to high resolution imaging.
    Ball G; Parton RM; Hamilton RS; Davis I
    Methods Enzymol; 2012; 504():29-55. PubMed ID: 22264528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of intraflagellar transport in C. elegans sensory cilia.
    Hao L; Acar S; Evans J; Ou G; Scholey JM
    Methods Cell Biol; 2009; 93():235-66. PubMed ID: 20409821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification.
    Huang XT; Zhu Y; Chan LHL; Zhao Z; Yan H
    Bioinformatics; 2017 May; 33(10):1528-1535. PubMed ID: 28011782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein folding stability and dynamics imaged in a living cell.
    Ebbinghaus S; Dhar A; McDonald JD; Gruebele M
    Nat Methods; 2010 Apr; 7(4):319-23. PubMed ID: 20190760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans.
    Kuroyanagi H; Ohno G; Sakane H; Maruoka H; Hagiwara M
    Nat Protoc; 2010 Sep; 5(9):1495-517. PubMed ID: 20725066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons.
    Antonacci S; Forand D; Wolf M; Tyus C; Barney J; Kellogg L; Simon MA; Kerr G; Wells KL; Younes S; Mortimer NT; Olesnicky EC; Killian DJ
    G3 (Bethesda); 2015 Feb; 5(4):639-53. PubMed ID: 25673135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Molecule Fluorescence Microscopy in Living Caenorhabditis elegans.
    van Krugten J; Peterman EJG
    Methods Mol Biol; 2018; 1665():145-154. PubMed ID: 28940068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell tracking in live Caenorhabditis elegans embryos via third harmonic generation imaging microscopy measurements.
    Tserevelakis GJ; Filippidis G; Megalou EV; Fotakis C; Tavernarakis N
    J Biomed Opt; 2011 Apr; 16(4):046019. PubMed ID: 21529088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualization of the spatial and temporal dynamics of MAPK signaling using fluorescence imaging techniques.
    Tomida T
    J Physiol Sci; 2015 Jan; 65(1):37-49. PubMed ID: 25145828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding FRET as a research tool for cellular studies.
    Shrestha D; Jenei A; Nagy P; Vereb G; Szöllősi J
    Int J Mol Sci; 2015 Mar; 16(4):6718-56. PubMed ID: 25815593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetically Encoded Fluorescent Indicators to Visualize Protein Phosphorylation in Living Cells.
    Sato M; Umezawa Y
    Methods Mol Biol; 2016; 1360():149-56. PubMed ID: 26501908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiplexed visualization of dynamic signaling networks using genetically encoded fluorescent protein-based biosensors.
    Depry C; Mehta S; Zhang J
    Pflugers Arch; 2013 Mar; 465(3):373-81. PubMed ID: 23138230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell kinase assays: opening a window onto cell behavior.
    Sims CE; Allbritton NL
    Curr Opin Biotechnol; 2003 Feb; 14(1):23-8. PubMed ID: 12565998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring Phosphatidic Acid Signaling in Breast Cancer Cells Using Genetically Encoded Biosensors.
    Lu M; Tay LW; He J; Du G
    Methods Mol Biol; 2016; 1406():225-37. PubMed ID: 26820960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events.
    Lee HN; Mehta S; Zhang J
    Curr Opin Cell Biol; 2020 Apr; 63():114-124. PubMed ID: 32058267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular Application of Genetically Encoded Sensors and Impeders of AMPK.
    Miyamoto T; Rho E; Kim A; Inoue T
    Methods Mol Biol; 2018; 1732():255-272. PubMed ID: 29480481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Caenorhabditis elegans TRPV channels function in a modality-specific pathway to regulate response to aberrant sensory signaling.
    Ezak MJ; Hong E; Chaparro-Garcia A; Ferkey DM
    Genetics; 2010 May; 185(1):233-44. PubMed ID: 20176974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple doublesex-related genes specify critical cell fates in a C. elegans male neural circuit.
    Siehr MS; Koo PK; Sherlekar AL; Bian X; Bunkers MR; Miller RM; Portman DS; Lints R
    PLoS One; 2011; 6(11):e26811. PubMed ID: 22069471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FRET Microscopy for Real-Time Visualization of Second Messengers in Living Cells.
    Kraft AE; Nikolaev VO
    Methods Mol Biol; 2017; 1563():85-90. PubMed ID: 28324603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.