BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24692655)

  • 1. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats.
    Platt RN; Vandewege MW; Kern C; Schmidt CJ; Hoffmann FG; Ray DA
    Mol Biol Evol; 2014 Jun; 31(6):1536-45. PubMed ID: 24692655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats.
    Pagán HJ; Macas J; Novák P; McCulloch ES; Stevens RD; Ray DA
    Genome Biol Evol; 2012; 4(4):575-85. PubMed ID: 22491057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bats with hATs: evidence for recent DNA transposon activity in genus Myotis.
    Ray DA; Pagan HJ; Thompson ML; Stevens RD
    Mol Biol Evol; 2007 Mar; 24(3):632-9. PubMed ID: 17150974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The limited distribution of Helitrons to vesper bats supports horizontal transfer.
    Thomas J; Sorourian M; Ray D; Baker RJ; Pritham EJ
    Gene; 2011 Mar; 474(1-2):52-8. PubMed ID: 21193022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia.
    Paulat NS; Storer JM; Moreno-Santillán DD; Osmanski AB; Sullivan KAM; Grimshaw JR; Korstian J; Halsey M; Garcia CJ; Crookshanks C; Roberts J; Smit AFA; Hubley R; Rosen J; Teeling EC; Vernes SC; Myers E; Pippel M; Brown T; Hiller M; ; Rojas D; Dávalos LM; Lindblad-Toh K; Karlsson EK; Ray DA
    Mol Biol Evol; 2023 May; 40(5):. PubMed ID: 37071810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian transposable elements and their impacts on genome evolution.
    Platt RN; Vandewege MW; Ray DA
    Chromosome Res; 2018 Mar; 26(1-2):25-43. PubMed ID: 29392473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinpointing the vesper bat transposon revolution using the Miniopterus natalensis genome.
    Platt RN; Mangum SF; Ray DA
    Mob DNA; 2016; 7():12. PubMed ID: 27489570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary history of mammalian transposons determined by genome-wide defragmentation.
    Giordano J; Ge Y; Gelfand Y; Abrusán G; Benson G; Warburton PE
    PLoS Comput Biol; 2007 Jul; 3(7):e137. PubMed ID: 17630829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus.
    Ray DA; Feschotte C; Pagan HJ; Smith JD; Pritham EJ; Arensburger P; Atkinson PW; Craig NL
    Genome Res; 2008 May; 18(5):717-28. PubMed ID: 18340040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and evolution of human microRNAs from transposable elements.
    Piriyapongsa J; Mariño-Ramírez L; Jordan IK
    Genetics; 2007 Jun; 176(2):1323-37. PubMed ID: 17435244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Timeframes of speciation, reticulation, and hybridization in the bulldog bat explained through phylogenetic analyses of all genetic transmission elements.
    Khan FA; Phillips CD; Baker RJ
    Syst Biol; 2014 Jan; 63(1):96-110. PubMed ID: 24149076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diversity of class II transposable elements in mammalian genomes has arisen from ancestral phylogenetic splits during ancient waves of proliferation through the genome.
    Hellen EH; Brookfield JF
    Mol Biol Evol; 2013 Jan; 30(1):100-8. PubMed ID: 22923465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jumping the fine LINE between species: horizontal transfer of transposable elements in animals catalyses genome evolution.
    Ivancevic AM; Walsh AM; Kortschak RD; Adelson DL
    Bioessays; 2013 Dec; 35(12):1071-82. PubMed ID: 24003001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats.
    de Sotero-Caio CG; Cabral-de-Mello DC; Calixto MDS; Valente GT; Martins C; Loreto V; de Souza MJ; Santos N
    Chromosome Res; 2017 Oct; 25(3-4):313-325. PubMed ID: 28916913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human.
    Qin S; Jin P; Zhou X; Chen L; Ma F
    PLoS One; 2015; 10(6):e0131365. PubMed ID: 26115450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The novel MER transposon-derived miRNAs in human genome.
    Ahn K; Gim JA; Ha HS; Han K; Kim HS
    Gene; 2013 Jan; 512(2):422-8. PubMed ID: 22926102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals.
    Glazov EA; McWilliam S; Barris WC; Dalrymple BP
    Mol Biol Evol; 2008 May; 25(5):939-48. PubMed ID: 18281269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic landscape of human, bat, and ex vivo DNA transposon integrations.
    Campos-Sánchez R; Kapusta A; Feschotte C; Chiaromonte F; Makova KD
    Mol Biol Evol; 2014 Jul; 31(7):1816-32. PubMed ID: 24809961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).
    Botero-Castro F; Tilak MK; Justy F; Catzeflis F; Delsuc F; Douzery EJ
    Mol Phylogenet Evol; 2013 Dec; 69(3):728-39. PubMed ID: 23850499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.