BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 24694143)

  • 1. Image quality in thoracic 4D cone-beam CT: a sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing.
    Shieh CC; Kipritidis J; O'Brien RT; Kuncic Z; Keall PJ
    Med Phys; 2014 Apr; 41(4):041912. PubMed ID: 24694143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR).
    Shieh CC; Kipritidis J; O'Brien RT; Cooper BJ; Kuncic Z; Keall PJ
    Phys Med Biol; 2015 Jan; 60(2):841-68. PubMed ID: 25565244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faster and lower dose imaging: evaluating adaptive, constant gantry velocity and angular separation in fast low-dose 4D cone beam CT imaging.
    Lau BKF; Dillon O; Vinod SK; O'Brien RT; Reynolds T
    Med Phys; 2024 Feb; 51(2):1364-1382. PubMed ID: 37427751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.
    Zhang H; Kruis M; Sonke JJ
    Phys Med Biol; 2017 Mar; 62(6):2254-2275. PubMed ID: 28140361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified McKinnon-Bates (MKB) algorithm for improved 4D cone-beam computed tomography (CBCT) of the lung.
    Star-Lack J; Sun M; Oelhafen M; Berkus T; Pavkovich J; Brehm M; Arheit M; Paysan P; Wang A; Munro P; Seghers D; Carvalho LM; Verbakel WFAR
    Med Phys; 2018 Jun; ():. PubMed ID: 29869784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration.
    Riblett MJ; Christensen GE; Weiss E; Hugo GD
    Med Phys; 2018 Oct; 45(10):4471-4482. PubMed ID: 30118177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
    Park JC; Zhang H; Chen Y; Fan Q; Li JG; Liu C; Lu B
    Phys Med Biol; 2015 Dec; 60(23):9157-83. PubMed ID: 26562284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method.
    Jia X; Tian Z; Lou Y; Sonke JJ; Jiang SB
    Med Phys; 2012 Sep; 39(9):5592-602. PubMed ID: 22957625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing 4DCBCT projection allocation to respiratory bins.
    O'Brien RT; Kipritidis J; Shieh CC; Keall PJ
    Phys Med Biol; 2014 Oct; 59(19):5631-49. PubMed ID: 25190310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thoracic motion-compensated cone-beam computed tomography in under 20 seconds on a fast-rotating linac: A simulation study.
    Blake SJ; Dillon O; Byrne HL; O'Brien RT
    J Appl Clin Med Phys; 2023 Mar; 24(3):e13909. PubMed ID: 36680744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time respiratory triggered four dimensional cone-beam CT halves imaging dose compared to conventional 4D CBCT.
    Cooper BJ; O'Brien RT; Shieh CC; Keall PJ
    Phys Med Biol; 2019 Mar; 64(7):07NT01. PubMed ID: 30754038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPARE: Sparse-view reconstruction challenge for 4D cone-beam CT from a 1-min scan.
    Shieh CC; Gonzalez Y; Li B; Jia X; Rit S; Mory C; Riblett M; Hugo G; Zhang Y; Jiang Z; Liu X; Ren L; Keall P
    Med Phys; 2019 Sep; 46(9):3799-3811. PubMed ID: 31247134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.
    Ahmad M; Balter P; Pan T
    Med Phys; 2011 Oct; 38(10):5646-56. PubMed ID: 21992381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing 4DCBCT scan time and dose through motion compensated acquisition and reconstruction.
    Lau BKF; Reynolds T; Wallis A; Smith S; George A; Keall PJ; Sonke JJ; Vinod SK; Dillon O; O'Brien RT
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33662943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cone-beam breast computed tomography using ultra-fast image reconstruction with constrained, total-variation minimization for suppression of artifacts.
    Tseng HW; Vedantham S; Karellas A
    Phys Med; 2020 May; 73():117-124. PubMed ID: 32361156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of 4D cone-beam CT algorithms for slowly rotating scanners.
    Bergner F; Berkus T; Oelhafen M; Kunz P; Pa T; Grimmer R; Ritschl L; Kachelriess M
    Med Phys; 2010 Sep; 37(9):5044-53. PubMed ID: 20964224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.