These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 24694169)
1. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom. Li J; Ji H; Cao L; Zang D; Gu R; Xia B; Wu Q Int J Neural Syst; 2014 Jun; 24(4):1450014. PubMed ID: 24694169 [TBL] [Abstract][Full Text] [Related]
2. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control. Cao L; Li J; Ji H; Jiang C J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576 [TBL] [Abstract][Full Text] [Related]
3. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Brunner C; Allison BZ; Altstätter C; Neuper C J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538 [TBL] [Abstract][Full Text] [Related]
4. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703 [TBL] [Abstract][Full Text] [Related]
5. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. Long J; Li Y; Wang H; Yu T; Pan J; Li F IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936 [TBL] [Abstract][Full Text] [Related]
6. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. Li Y; Pan J; Wang F; Yu Z IEEE Trans Biomed Eng; 2013 Nov; 60(11):3156-66. PubMed ID: 23799679 [TBL] [Abstract][Full Text] [Related]
7. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550 [TBL] [Abstract][Full Text] [Related]
8. A new hybrid BCI paradigm based on P300 and SSVEP. Wang M; Daly I; Allison BZ; Jin J; Zhang Y; Chen L; Wang X J Neurosci Methods; 2015 Apr; 244():16-25. PubMed ID: 24997343 [TBL] [Abstract][Full Text] [Related]
9. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI. Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923 [TBL] [Abstract][Full Text] [Related]
10. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
11. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
12. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback. Yu T; Xiao J; Wang F; Zhang R; Gu Z; Cichocki A; Li Y IEEE Trans Biomed Eng; 2015 Jul; 62(7):1706-17. PubMed ID: 25680205 [TBL] [Abstract][Full Text] [Related]
14. Control of a simulated wheelchair based on a hybrid brain computer interface. Long J; Li Y; Wang H; Yu T; Pan J Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6727-30. PubMed ID: 23367473 [TBL] [Abstract][Full Text] [Related]
15. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature. Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924 [TBL] [Abstract][Full Text] [Related]
16. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]
17. Self-Paced Operation of a Wheelchair Based on a Hybrid Brain-Computer Interface Combining Motor Imagery and P300 Potential. Yu Y; Zhou Z; Liu Y; Jiang J; Yin E; Zhang N; Wang Z; Liu Y; Wu X; Hu D IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2516-2526. PubMed ID: 29220327 [TBL] [Abstract][Full Text] [Related]
18. Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP. Ko LW; Ranga SSK; Komarov O; Chen CC J Healthc Eng; 2017; 2017():3789386. PubMed ID: 29065590 [TBL] [Abstract][Full Text] [Related]
19. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential. Ma T; Li H; Deng L; Yang H; Lv X; Li P; Li F; Zhang R; Liu T; Yao D; Xu P J Neural Eng; 2017 Apr; 14(2):026015. PubMed ID: 28145274 [TBL] [Abstract][Full Text] [Related]
20. A self-paced motor imagery based brain-computer interface for robotic wheelchair control. Tsui CS; Gan JQ; Hu H Clin EEG Neurosci; 2011 Oct; 42(4):225-9. PubMed ID: 22208119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]