These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 24694278)
1. Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles. Chen H; Li J; Zhou W; Pelan EG; Stoyanov SD; Arnaudov LN; Stone HA Langmuir; 2014 Apr; 30(15):4262-6. PubMed ID: 24694278 [TBL] [Abstract][Full Text] [Related]
2. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Xu S; Zong Y; Li W; Zhang S; Wan M Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840 [TBL] [Abstract][Full Text] [Related]
3. Effect of surfactant addition on removal of microbubbles using ultrasound. Kobayashi D; Hayashida Y; Sano K; Terasaka K Ultrasonics; 2014 Aug; 54(6):1425-9. PubMed ID: 24745307 [TBL] [Abstract][Full Text] [Related]
4. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. De Cock I; Lajoinie G; Versluis M; De Smedt SC; Lentacker I Biomaterials; 2016 Mar; 83():294-307. PubMed ID: 26796042 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy. Seo M; Gorelikov I; Williams R; Matsuura N Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507 [TBL] [Abstract][Full Text] [Related]
6. Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation. Kobayashi D; Hayashida Y; Sano K; Terasaka K Ultrason Sonochem; 2011 Sep; 18(5):1193-6. PubMed ID: 21186134 [TBL] [Abstract][Full Text] [Related]
7. Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets. Seo M; Williams R; Matsuura N Lab Chip; 2015 Sep; 15(17):3581-90. PubMed ID: 26220563 [TBL] [Abstract][Full Text] [Related]
8. Medium-high frequency sonication dominates spherical-SiO Liu X; Wu Z; Manzoli M; Jicsinszky L; Cavalli R; Battaglia L; Cravotto G Ultrason Sonochem; 2022 Nov; 90():106181. PubMed ID: 36182836 [TBL] [Abstract][Full Text] [Related]
9. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device. Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259 [TBL] [Abstract][Full Text] [Related]
10. Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment. Liu WW; Liu SW; Liou YR; Wu YH; Yang YC; Wang CR; Li PC Sci Rep; 2016 Apr; 6():24753. PubMed ID: 27094209 [TBL] [Abstract][Full Text] [Related]
11. A new approach to nucleation of cavitation bubbles at chemically modified surfaces. Belova V; Shchukin DG; Gorin DA; Kopyshev A; Möhwald H Phys Chem Chem Phys; 2011 May; 13(17):8015-23. PubMed ID: 21448506 [TBL] [Abstract][Full Text] [Related]
12. Recent Patents and Formulation of Nanopharmaceuticals Using Ultrasonication Technique. Saiwal N; Dahiya M; Dureja H Recent Pat Nanotechnol; 2018; 12(2):86-100. PubMed ID: 29165099 [TBL] [Abstract][Full Text] [Related]
13. Microbubbles, Nanodroplets and Gas-Stabilizing Solid Particles for Ultrasound-Mediated Extravasation of Unencapsulated Drugs: An Exposure Parameter Optimization Study. Mannaris C; Bau L; Grundy M; Gray M; Lea-Banks H; Seth A; Teo B; Carlisle R; Stride E; Coussios CC Ultrasound Med Biol; 2019 Apr; 45(4):954-967. PubMed ID: 30655109 [TBL] [Abstract][Full Text] [Related]
14. Coated gas bubbles for the continuous synthesis of hollow inorganic particles. Wan J; Stone HA Langmuir; 2012 Jan; 28(1):37-41. PubMed ID: 22129137 [TBL] [Abstract][Full Text] [Related]
15. Effect of Ultrasound on the Vasculature and Extravasation of Nanoscale Particles Imaged in Real Time. Yemane PT; Åslund AKO; Snipstad S; Bjørkøy A; Grendstad K; Berg S; Mørch Y; Torp SH; Hansen R; Davies CL Ultrasound Med Biol; 2019 Nov; 45(11):3028-3041. PubMed ID: 31474384 [TBL] [Abstract][Full Text] [Related]
16. Statistics of acoustically induced bubble-nucleation events in in vitro blood: a feasibility study. Gateau J; Taccoen N; Tanter M; Aubry JF Ultrasound Med Biol; 2013 Oct; 39(10):1812-25. PubMed ID: 23932270 [TBL] [Abstract][Full Text] [Related]
17. Sonochemical nanosynthesis at the engineered interface of a cavitation microbubble. Shchukin DG; Möhwald H Phys Chem Chem Phys; 2006 Aug; 8(30):3496-506. PubMed ID: 16871338 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of focused ultrasound with microbubbles on the treatments of anticancer nanodrug in mouse tumors. Lin CY; Li JR; Tseng HC; Wu MF; Lin WL Nanomedicine; 2012 Aug; 8(6):900-7. PubMed ID: 22033084 [TBL] [Abstract][Full Text] [Related]
19. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system. Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204 [TBL] [Abstract][Full Text] [Related]
20. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer. Tang SY; Shridharan P; Sivakumar M Ultrason Sonochem; 2013 Jan; 20(1):485-97. PubMed ID: 22633626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]