These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24694322)

  • 1. Exposure to the cyanotoxin microcystin arising from interspecific differences in feeding habits among fish and shellfish in the James River Estuary, Virginia.
    Wood JD; Franklin RB; Garman G; McIninch S; Porter AJ; Bukaveckas PA
    Environ Sci Technol; 2014 May; 48(9):5194-202. PubMed ID: 24694322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sublethal dietary effects of microcystin producing Microcystis on threadfin shad, Dorosoma petenense.
    Acuña S; Baxa D; Teh S
    Toxicon; 2012 Nov; 60(6):1191-202. PubMed ID: 22925841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacteria and cyanotoxins at the river-estuarine transition.
    Bukaveckas PA; Franklin R; Tassone S; Trache B; Egerton T
    Harmful Algae; 2018 Jun; 76():11-21. PubMed ID: 29887201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransport of Algal Toxins to Riparian Food Webs.
    Moy NJ; Dodson J; Tassone SJ; Bukaveckas PA; Bulluck LP
    Environ Sci Technol; 2016 Sep; 50(18):10007-14. PubMed ID: 27552323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river.
    Thorp JH; Delong MD; Greenwood KS; Casper AF
    Oecologia; 1998 Dec; 117(4):551-563. PubMed ID: 28307681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: a stable isotope approach.
    França S; Vasconcelos RP; Tanner S; Máguas C; Costa MJ; Cabral HN
    Mar Environ Res; 2011 Oct; 72(4):204-15. PubMed ID: 21958908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of microcystins on the feeding behaviour and energy balance of zebra mussels, Dreissena polymorpha: a bioenergetics approach.
    Juhel G; Davenport J; O'Halloran J; Culloty SC; O'Riordan RM; James KF; Furey A; Allis O
    Aquat Toxicol; 2006 Oct; 79(4):391-400. PubMed ID: 16911837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity.
    Qiao Q; Le Manach S; Huet H; Duvernois-Berthet E; Chaouch S; Duval C; Sotton B; Ponger L; Marie A; Mathéron L; Lennon S; Bolbach G; Djediat C; Bernard C; Edery M; Marie B
    Environ Pollut; 2016 Dec; 219():119-131. PubMed ID: 27814527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and prediction for contamination of freshwater bivalves (Unionidae) with the cyanobacterial toxin microcystin in hypereutrophic Lake Suwa, Japan.
    Yokoyama A; Park HD
    Environ Toxicol; 2002 Oct; 17(5):424-33. PubMed ID: 12242672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental model of microcystin accumulation in the liver of Oreochromis niloticus exposed subchronically to a toxic bloom of Microcystis sp.
    Deblois CP; Giani A; Bird DF
    Aquat Toxicol; 2011 May; 103(1-2):63-70. PubMed ID: 21392496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish at different kairomone concentrations.
    Ha K; Takamura N; Jang MH
    Bull Environ Contam Toxicol; 2009 Nov; 83(5):761-5. PubMed ID: 19669611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae.
    Perron MC; Qiu B; Boucher N; Bellemare F; Juneau P
    Toxicon; 2012 Apr; 59(5):567-77. PubMed ID: 22234271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the Exposure Pathway and Impacts of Microcystis on Threadfin Shad, Dorosoma petenense, in San Francisco Estuary.
    Acuña S; Baxa D; Lehman P; Teh FC; Deng DF; Teh S
    Environ Toxicol Chem; 2020 Apr; 39(4):787-798. PubMed ID: 31900949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota.
    Ibelings BW; Havens KE
    Adv Exp Med Biol; 2008; 619():675-732. PubMed ID: 18461789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of toxic blue-green algae in the Kucukcekmece lagoon (Istanbul, Turkey).
    Albay M; Matthiensen A; Codd GA
    Environ Toxicol; 2005 Jun; 20(3):277-84. PubMed ID: 15892069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the microcystin profile of a cyanobacterial bloom on growth and toxin accumulation in common carp Cyprinus carpio larvae.
    El Ghazali I; Saqrane S; Carvalho AP; Ouahid Y; Del Campo FF; Vasconcelos V; Oudra B
    J Fish Biol; 2010 Apr; 76(6):1415-30. PubMed ID: 20537022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age related acute effects of microcystin-LR on Daphnia magna biotransformation and oxidative stress.
    Ortiz-Rodríguez R; Wiegand C
    Toxicon; 2010 Dec; 56(8):1342-9. PubMed ID: 20692276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sublethal dietary effects of Microcystis on Sacramento splittail, Pogonichthys macrolepidotus.
    Acuña S; Deng DF; Lehman P; Teh S
    Aquat Toxicol; 2012 Apr; 110-111():1-8. PubMed ID: 22245626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver.
    Le Manach S; Sotton B; Huet H; Duval C; Paris A; Marie A; Yépremian C; Catherine A; Mathéron L; Vinh J; Edery M; Marie B
    Environ Pollut; 2018 Mar; 234():523-537. PubMed ID: 29220784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.