These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24694323)

  • 1. Do peat amendments to oil sands wet sediments affect Carex aquatilis biomass for reclamation success?
    Roy MC; Mollard FP; Foote AL
    J Environ Manage; 2014 Jun; 139():154-63. PubMed ID: 24694323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reclaiming to Brackish Wetlands in the Alberta Oil Sands: Comparison of Responses to Sodium Concentrations by
    Glaeser LC; House M; Vitt DH
    Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing peat-forming plant communities: A comparison of wetland reclamation methods in Alberta's oil sands region.
    Borkenhagen A; Cooper DJ; House M; Vitt DH
    Ecol Appl; 2024 Mar; 34(2):e2929. PubMed ID: 37942503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of wetland forbs transplanted into marshes amended with oil sands processed water.
    Mollard FP; Roy MC; Foote AL
    Environ Monit Assess; 2015 Mar; 187(3):125. PubMed ID: 25697311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating carbon sources driving microbial metabolism during oil sands reclamation.
    Bradford LM; Ziolkowski LA; Goad C; Warren LA; Slater GF
    J Environ Manage; 2017 Mar; 188():246-254. PubMed ID: 27987440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vegetation community composition in wetlands created following oil sand mining in Alberta, Canada.
    Roy MC; Foote L; Ciborowski JJ
    J Environ Manage; 2016 May; 172():18-28. PubMed ID: 26921562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region.
    Oswald CJ; Carey SK
    Environ Pollut; 2016 Jun; 213():628-637. PubMed ID: 27017139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the attenuation of naphthenic acids in constructed wetland mesocosms planted with Carex aquatilis.
    Trepanier KE; Vander Meulen IJ; Ahad JME; Headley JV; Degenhardt D
    Environ Monit Assess; 2023 Sep; 195(10):1228. PubMed ID: 37725196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada.
    Wayland M; Headley JV; Peru KM; Crosley R; Brownlee BG
    Environ Monit Assess; 2008 Jan; 136(1-3):167-82. PubMed ID: 17380417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing stable isotopes and growth of algae in oil sands aquatic reclamation.
    Boutsivongsakd M; Farwell AJ; Chen H; Dixon DG
    J Toxicol Environ Health A; 2015; 78(3):196-214. PubMed ID: 25506635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barley, a potential species for initial reclamation of saline composite tailings of oil sands.
    Renault S; MacKinnon M; Qualizza C
    J Environ Qual; 2003; 32(6):2245-53. PubMed ID: 14674548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils.
    Kwak JH; Chang SX; Naeth MA; Schaaf W
    PLoS One; 2015; 10(11):e0143857. PubMed ID: 26618605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and physiological responses of tree seedlings to oil sands non-segregated tailings.
    Zhang WQ; Fleurial K; Sherr I; Vassov R; Zwiazek JJ
    Environ Pollut; 2020 Apr; 259():113945. PubMed ID: 31952100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food web structure in oil sands reclaimed wetlands.
    Kovalenko KE; Ciborowski JJ; Daly C; Dixon DG; Farwell AJ; Foote AL; Frederick KR; Costa JM; Kennedy K; Liber K; Roy MC; Slama CA; Smits JE
    Ecol Appl; 2013 Jul; 23(5):1048-60. PubMed ID: 23967574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of altai wildrye (Elymus angustus) and slender wheatgrass (Agropyron trachycaulum) for initial reclamation of saline composite tailings of oil sands.
    Renault S; Qualizza C; MacKinnon M
    Environ Pollut; 2004; 128(3):339-49. PubMed ID: 14720476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant growth and arbuscular mycorrhizae development in oil sands processing by-products.
    Boldt-Burisch K; Naeth MA; Schneider U; Schneider B; Hüttl RF
    Sci Total Environ; 2018 Apr; 621():30-39. PubMed ID: 29175619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation and aquatic toxicity of naphthenic acids in oil sands process-affected waters using simulated wetlands.
    Toor NS; Franz ED; Fedorak PM; MacKinnon MD; Liber K
    Chemosphere; 2013 Jan; 90(2):449-58. PubMed ID: 23000048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction.
    Reid ML; Warren LA
    J Environ Manage; 2016 Jan; 166():321-9. PubMed ID: 26520039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microbiology of oil sands tailings: past, present, future.
    Foght JM; Gieg LM; Siddique T
    FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28334283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing biogeochemical and microbial variability over a complete oil sand mining and recultivation process.
    Noah M; Lappé M; Schneider B; Vieth-Hillebrand A; Wilkes H; Kallmeyer J
    Sci Total Environ; 2014 Nov; 499():297-310. PubMed ID: 25201817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.