BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24694345)

  • 1. Post-translational modification of transcription factors: mechanisms and potential therapeutic interventions.
    Planey SL; Kumar R; Arnott JA
    Curr Mol Pharmacol; 2013 Nov; 6(3):173-82. PubMed ID: 24694345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A post-translational modification code for transcription factors: sorting through a sea of signals.
    Benayoun BA; Veitia RA
    Trends Cell Biol; 2009 May; 19(5):189-97. PubMed ID: 19328693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting post-translational modification of transcription factors as cancer therapy.
    Qian M; Yan F; Yuan T; Yang B; He Q; Zhu H
    Drug Discov Today; 2020 Aug; 25(8):1502-1512. PubMed ID: 32540433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating the regulators: modulators of transcription factor activity.
    Everett L; Hansen M; Hannenhalli S
    Methods Mol Biol; 2010; 674():297-312. PubMed ID: 20827600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of transcription factor activity by interconnected post-translational modifications.
    Filtz TM; Vogel WK; Leid M
    Trends Pharmacol Sci; 2014 Feb; 35(2):76-85. PubMed ID: 24388790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-translational modification of the death receptor complex as a potential therapeutic target in cancer.
    Kang K; Lee SR; Piao X; Hur GM
    Arch Pharm Res; 2019 Jan; 42(1):76-87. PubMed ID: 30610617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTM-Switchboard--a database of posttranslational modifications of transcription factors, the mediating enzymes and target genes.
    Everett L; Vo A; Hannenhalli S
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D66-71. PubMed ID: 18927104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational modifications of nuclear co-repressor RIP140: a therapeutic target for metabolic diseases.
    Mostaqul Huq MD; Gupta P; Wei LN
    Curr Med Chem; 2008; 15(4):386-92. PubMed ID: 18288993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of transcription factors by sumoylation.
    Rosonina E; Akhter A; Dou Y; Babu J; Sri Theivakadadcham VS
    Transcription; 2017 Aug; 8(4):220-231. PubMed ID: 28379052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of transcription factor acetylation in the regulation of metabolic homeostasis.
    Park JM; Jo SH; Kim MY; Kim TH; Ahn YH
    Protein Cell; 2015 Nov; 6(11):804-13. PubMed ID: 26334401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric post-translational modification codes.
    Nussinov R; Tsai CJ; Xin F; Radivojac P
    Trends Biochem Sci; 2012 Oct; 37(10):447-55. PubMed ID: 22884395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically Disordered Proteins Link Alternative Splicing and Post-translational Modifications to Complex Cell Signaling and Regulation.
    Zhou J; Zhao S; Dunker AK
    J Mol Biol; 2018 Aug; 430(16):2342-2359. PubMed ID: 29626537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.
    Su MG; Weng JT; Hsu JB; Huang KY; Chi YH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):132. PubMed ID: 29322920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leading approaches in synthetic epigenetics for novel therapeutic strategies.
    Yamatsugu K; Kawashima SA; Kanai M
    Curr Opin Chem Biol; 2018 Oct; 46():10-17. PubMed ID: 29631088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of MYB and bHLH transcription factors: a glance at the protein level.
    Pireyre M; Burow M
    Mol Plant; 2015 Mar; 8(3):378-88. PubMed ID: 25667003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of SRC family coactivators by post-translational modifications.
    Li S; Shang Y
    Cell Signal; 2007 Jun; 19(6):1101-12. PubMed ID: 17368849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orphan PTMs: Rare, yet functionally important modifications of cysteine.
    Shannon DA; Weerapana E
    Biopolymers; 2014 Feb; 101(2):156-64. PubMed ID: 23564220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-silico analysis of claudin-5 reveals novel putative sites for post-translational modifications: Insights into potential molecular determinants of blood-brain barrier breach during HIV-1 infiltration.
    Awan FM; Anjum S; Obaid A; Ali A; Paracha RZ; Janjua HA
    Infect Genet Evol; 2014 Oct; 27():355-65. PubMed ID: 25120100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ITFP: an integrated platform of mammalian transcription factors.
    Zheng G; Tu K; Yang Q; Xiong Y; Wei C; Xie L; Zhu Y; Li Y
    Bioinformatics; 2008 Oct; 24(20):2416-7. PubMed ID: 18713790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.