These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24694693)
1. Finding near-optimal groups of epidemic spreaders in a complex network. Moores G; Shakarian P; Macdonald B; Howard N PLoS One; 2014; 9(4):e90303. PubMed ID: 24694693 [TBL] [Abstract][Full Text] [Related]
2. Identifying influential spreaders in complex networks for disease spread and control. Wei X; Zhao J; Liu S; Wang Y Sci Rep; 2022 Apr; 12(1):5550. PubMed ID: 35365715 [TBL] [Abstract][Full Text] [Related]
3. A graph exploration method for identifying influential spreaders in complex networks. Salamanos N; Voudigari E; Yannakoudakis EJ Appl Netw Sci; 2017; 2(1):26. PubMed ID: 30443581 [TBL] [Abstract][Full Text] [Related]
4. Lexical sorting centrality to distinguish spreading abilities of nodes in complex networks under the Susceptible-Infectious-Recovered (SIR) model. Şimşek A J King Saud Univ Comput Inf Sci; 2022 Sep; 34(8):4810-4820. PubMed ID: 38620758 [TBL] [Abstract][Full Text] [Related]
5. Centrality in Complex Networks with Overlapping Community Structure. Ghalmane Z; Cherifi C; Cherifi H; Hassouni ME Sci Rep; 2019 Jul; 9(1):10133. PubMed ID: 31300702 [TBL] [Abstract][Full Text] [Related]
6. Systematic comparison between methods for the detection of influential spreaders in complex networks. Erkol Ş; Castellano C; Radicchi F Sci Rep; 2019 Oct; 9(1):15095. PubMed ID: 31641200 [TBL] [Abstract][Full Text] [Related]
7. Identification of influential spreaders in complex networks using HybridRank algorithm. Ahajjam S; Badir H Sci Rep; 2018 Aug; 8(1):11932. PubMed ID: 30093716 [TBL] [Abstract][Full Text] [Related]
8. Identifying and quantifying potential super-spreaders in social networks. Zhang D; Wang Y; Zhang Z Sci Rep; 2019 Oct; 9(1):14811. PubMed ID: 31616035 [TBL] [Abstract][Full Text] [Related]
9. Role of centrality for the identification of influential spreaders in complex networks. de Arruda GF; Barbieri AL; Rodríguez PM; Rodrigues FA; Moreno Y; Costa Lda F Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032812. PubMed ID: 25314487 [TBL] [Abstract][Full Text] [Related]
10. A socially aware routing based on local contact information in delay-tolerant networks. Kim CM; Han YH; Youn JS; Jeong YS ScientificWorldJournal; 2014; 2014():408676. PubMed ID: 25143978 [TBL] [Abstract][Full Text] [Related]
11. Unveiling Influence in Networks: A Novel Centrality Metric and Comparative Analysis through Graph-Based Models. Bendahman N; Lotfi D Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920495 [TBL] [Abstract][Full Text] [Related]
12. Link removal for the control of stochastically evolving epidemics over networks: a comparison of approaches. Enns EA; Brandeau ML J Theor Biol; 2015 Apr; 371():154-65. PubMed ID: 25698229 [TBL] [Abstract][Full Text] [Related]
13. SpreadRank: A Novel Approach for Identifying Influential Spreaders in Complex Networks. Zhu X; Huang J Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190424 [TBL] [Abstract][Full Text] [Related]
14. Beyond network structure: How heterogeneous susceptibility modulates the spread of epidemics. Smilkov D; Hidalgo CA; Kocarev L Sci Rep; 2014 Apr; 4():4795. PubMed ID: 24762621 [TBL] [Abstract][Full Text] [Related]
15. Improved collective influence of finding most influential nodes based on disjoint-set reinsertion. Zhu F Sci Rep; 2018 Sep; 8(1):14503. PubMed ID: 30266910 [TBL] [Abstract][Full Text] [Related]
16. A family of algorithms for computing consensus about node state from network data. Brush ER; Krakauer DC; Flack JC PLoS Comput Biol; 2013; 9(7):e1003109. PubMed ID: 23874167 [TBL] [Abstract][Full Text] [Related]
17. Top influencers can be identified universally by combining classical centralities. Bucur D Sci Rep; 2020 Nov; 10(1):20550. PubMed ID: 33239723 [TBL] [Abstract][Full Text] [Related]
18. A Two-Phase Feature Selection Method for Identifying Influential Spreaders of Disease Epidemics in Complex Networks. Wang X; Han Y; Wang B Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510015 [TBL] [Abstract][Full Text] [Related]
19. An Efficient Partition-Based Approach to Identify and Scatter Multiple Relevant Spreaders in Complex Networks. Yanez-Sierra J; Diaz-Perez A; Sosa-Sosa V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573841 [TBL] [Abstract][Full Text] [Related]
20. Leveraging percolation theory to single out influential spreaders in networks. Radicchi F; Castellano C Phys Rev E; 2016 Jun; 93(6):062314. PubMed ID: 27415287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]