These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 24694707)
1. Raman microspectroscopy of old paper samples with foxing. Balakhnina IA; Brandt NN; Chikishev AY; Rebrikova NL Appl Spectrosc; 2014; 68(4):495-501. PubMed ID: 24694707 [TBL] [Abstract][Full Text] [Related]
2. Analytical and microbiological characterization of paper samples exhibiting foxing stains. Nunes M; Relvas C; Figueira F; Campelo J; Candeias A; Caldeira AT; Ferreira T Microsc Microanal; 2015 Feb; 21(1):63-77. PubMed ID: 25787782 [TBL] [Abstract][Full Text] [Related]
3. Application of bioluminescence ATP measurement for evaluation of fungal viability of foxing spots on old documents. Rakotonirainy MS; Dubar P Luminescence; 2013; 28(3):308-12. PubMed ID: 22696448 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of foxing stains in eighteenth to nineteenth century drawings using non-destructive techniques. Manso M; Pessanha S; Figueira F; Valadas S; Guilherme A; Afonso M; Rocha AC; Oliveira MJ; Ribeiro I; Carvalho ML Anal Bioanal Chem; 2009 Dec; 395(7):2029-36. PubMed ID: 19784831 [TBL] [Abstract][Full Text] [Related]
5. Paper aging and degradation monitoring by the non-destructive two-dimensional micro-Raman mapping. Fazio E; Corsaro C; Mallamace D Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117660. PubMed ID: 31740118 [TBL] [Abstract][Full Text] [Related]
6. Characterization of foxing stains in early twentieth century photographic and paper materials. Modica A; Bruno M; Di Bella M; Alberghina MF; Brai M; Fontana D; Tranchina L Nat Prod Res; 2019 Apr; 33(7):987-996. PubMed ID: 27152450 [TBL] [Abstract][Full Text] [Related]
7. Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Kavkler K; Demšar A Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):740-6. PubMed ID: 21190892 [TBL] [Abstract][Full Text] [Related]
8. Nondestructive identification for red ink entries of seals by Raman and Fourier transform infrared spectrometry. Wang XF; Yu J; Zhang AL; Zhou DW; Xie MX Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():986-94. PubMed ID: 22925974 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic Investigations for the Dating of Paper from the Nineteenth Century. Pigorsch E; Obenaus H Appl Spectrosc; 2023 Mar; 77(3):231-238. PubMed ID: 36320119 [TBL] [Abstract][Full Text] [Related]
10. Use of metabolic and molecular methods for the identification of a Bacillus strain isolated from paper affected by foxing. De Paolis MR; Lippi D Microbiol Res; 2008; 163(2):121-31. PubMed ID: 17686620 [TBL] [Abstract][Full Text] [Related]
11. Combining a hydrogel and an electrochemical biosensor to determine the extent of degradation of paper artworks. Micheli L; Mazzuca C; Palleschi A; Palleschi G Anal Bioanal Chem; 2012 Jun; 403(6):1485-9. PubMed ID: 22411531 [TBL] [Abstract][Full Text] [Related]
12. Micro-Raman spectroscopy and chemometrical analysis for the distinction of copper phthalocyanine polymorphs in paint layers. Defeyt C; Van Pevenage J; Moens L; Strivay D; Vandenabeele P Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():636-40. PubMed ID: 23876927 [TBL] [Abstract][Full Text] [Related]
13. Applications of Raman spectroscopy to library heritage. Bicchieri M; Nardone M; Sodo A Ann Chim; 2001; 91(11-12):693-700. PubMed ID: 11836947 [TBL] [Abstract][Full Text] [Related]
14. Raman microspectroscopy as a valuable additional method to X-ray diffraction and electron microscope/microprobe analysis in the study of iron arsenates in environmental samples. Filippi M; Machovic V; Drahota P; Böhmová V Appl Spectrosc; 2009 Jun; 63(6):621-6. PubMed ID: 19531289 [TBL] [Abstract][Full Text] [Related]
15. Cow urine, Indian yellow, and art forgeries: An update. Smith GD Forensic Sci Int; 2017 Jul; 276():e30-e34. PubMed ID: 28501360 [TBL] [Abstract][Full Text] [Related]
16. Portable Raman monitoring of modern cleaning and consolidation operations of artworks on mineral supports. Martínez-Arkarazo I; Sarmiento A; Maguregui M; Castro K; Madariaga JM Anal Bioanal Chem; 2010 Aug; 397(7):2717-25. PubMed ID: 20238104 [TBL] [Abstract][Full Text] [Related]
17. Characterization of glycosaminoglycans by tandem vibrational microspectroscopy and multivariate data analysis. Mainreck N; Brézillon S; Sockalingum GD; Maquart FX; Manfait M; Wegrowski Y Methods Mol Biol; 2012; 836():117-30. PubMed ID: 22252631 [TBL] [Abstract][Full Text] [Related]
18. Qualitative analysis using Raman spectroscopy and chemometrics: a comprehensive model system for narcotics analysis. O'Connell ML; Ryder AG; Leger MN; Howley T Appl Spectrosc; 2010 Oct; 64(10):1109-21. PubMed ID: 20925980 [TBL] [Abstract][Full Text] [Related]
19. Analysis of starch distribution in the paper cross-section by Raman microscopy. Pigorsch E; Finger M; Thiele S; Brunner E Appl Spectrosc; 2013 Jan; 67(1):59-65. PubMed ID: 23317672 [TBL] [Abstract][Full Text] [Related]
20. Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel Raman spectroscopy. Lupoi JS; Smith EA Appl Spectrosc; 2012 Aug; 66(8):903-10. PubMed ID: 22800567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]