These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24694722)

  • 21. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
    Peternel L; Tsagarakis N; Ajoudani A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):811-822. PubMed ID: 28436880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-Controlled 2D Navigation Robot Based on a Spatial Gradient Controller and Predictive Environmental Coordinator.
    Zhang D; Liu S; Zhang J; Li G; Suo D; Liu T; Luo J; Ming Z; Wu J; Yan T
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):6138-6149. PubMed ID: 36343004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Brain-Robot Interaction System by Fusing Human and Machine Intelligence.
    Mao X; Li W; Lei C; Jin J; Duan F; Chen S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):533-542. PubMed ID: 30716043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An egocentric vision based assistive co-robot.
    Zhang J; Zhuang L; Wang Y; Zhou Y; Meng Y; Hua G
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650473. PubMed ID: 24187290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Writing through a robot: a proof of concept for a brain-machine interface.
    Pérez-Marcos D; Buitrago JA; Velásquez FD
    Med Eng Phys; 2011 Dec; 33(10):1314-7. PubMed ID: 21741290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Portable haptic interface with omni-directional movement and force capability.
    Avizzano CA; Satler M; Ruffaldi E
    IEEE Trans Haptics; 2014; 7(2):110-20. PubMed ID: 24968375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing a social and assistive robot for seniors.
    Eftring H; Frennert S
    Z Gerontol Geriatr; 2016 Jun; 49(4):274-81. PubMed ID: 27220732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of a graphic interface to control a robotic grasping arm: a multicenter study.
    Laffont I; Biard N; Chalubert G; Delahoche L; Marhic B; Boyer FC; Leroux C
    Arch Phys Med Rehabil; 2009 Oct; 90(10):1740-8. PubMed ID: 19801065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Four-Way Classification of EEG Responses To Virtual Robot Navigation.
    Wirth C; Toth J; Arvaneh M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3050-3053. PubMed ID: 33018648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An FDES-Based Shared Control Method for Asynchronous Brain-Actuated Robot.
    Liu R; Wang YX; Zhang L
    IEEE Trans Cybern; 2016 Jun; 46(6):1452-62. PubMed ID: 26357416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A telepresence mobile robot controlled with a noninvasive brain-computer interface.
    Escolano C; Antelis JM; Minguez J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):793-804. PubMed ID: 22180512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain-Machine Interface-Based Rat-Robot Behavior Control.
    Zhang J; Xu K; Zhang S; Wang Y; Zheng N; Pan G; Chen W; Wu Z; Zheng X
    Adv Exp Med Biol; 2019; 1101():123-147. PubMed ID: 31729674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization and control of a rehabilitation mobile robot by close human-machine cooperation.
    Hoppenot P; Colle E
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):181-90. PubMed ID: 11474971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain Painting: usability testing according to the user-centered design in end users with severe motor paralysis.
    Zickler C; Halder S; Kleih SC; Herbert C; Kübler A
    Artif Intell Med; 2013 Oct; 59(2):99-110. PubMed ID: 24080077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Middlesex University rehabilitation robot.
    Parsons B; White A; Prior S; Warner P
    J Med Eng Technol; 2005; 29(4):151-62. PubMed ID: 16012066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces.
    Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The comparison of motor learning performance with and without feedback.
    Orand A; Ushiba J; Tomita Y; Honda S
    Somatosens Mot Res; 2012; 29(3):103-10. PubMed ID: 22746218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is sensorimotor BCI performance influenced differently by mono, stereo, or 3-D auditory feedback?
    McCreadie KA; Coyle DH; Prasad G
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):431-40. PubMed ID: 24691154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paralyzed subject controls telepresence mobile robot using novel sEMG brain-computer interface: case study.
    Lyons KR; Joshi SS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650428. PubMed ID: 24187246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.