BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 24694786)

  • 1. A stoichiometric calibration method for dual energy computed tomography.
    Bourque AE; Carrier JF; Bouchard H
    Phys Med Biol; 2014 Apr; 59(8):2059-88. PubMed ID: 24694786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical comparison of tissue parameter extraction methods for dual energy computed tomography.
    Tremblay JÉ; Bedwani S; Bouchard H
    Med Phys; 2014 Aug; 41(8):081905. PubMed ID: 25086536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards subpercentage uncertainty proton stopping-power mapping via dual-energy CT: Direct experimental validation and uncertainty analysis of a statistical iterative image reconstruction method.
    Medrano M; Liu R; Zhao T; Webb T; Politte DG; Whiting BR; Liao R; Ge T; Porras-Chaverri MA; O'Sullivan JA; Williamson JF
    Med Phys; 2022 Mar; 49(3):1599-1618. PubMed ID: 35029302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stopping-power ratio estimation for proton radiotherapy using dual-energy computed tomography and prior-image constrained denoising.
    Zimmerman J; Thor D; Poludniowski G
    Med Phys; 2023 Mar; 50(3):1481-1495. PubMed ID: 36322128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications.
    Landry G; Parodi K; Wildberger JE; Verhaegen F
    Phys Med Biol; 2013 Aug; 58(15):5029-48. PubMed ID: 23831541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion range estimation by using dual energy computed tomography.
    Hünemohr N; Krauss B; Dinkel J; Gillmann C; Ackermann B; Jäkel O; Greilich S
    Z Med Phys; 2013 Dec; 23(4):300-13. PubMed ID: 23597413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues.
    Yang M; Virshup G; Clayton J; Zhu XR; Mohan R; Dong L
    Phys Med Biol; 2010 Mar; 55(5):1343-62. PubMed ID: 20145291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Phys Med Biol; 2008 May; 53(9):2439-56. PubMed ID: 18421124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric comparison of stopping power calibration with dual-energy CT and single-energy CT in proton therapy treatment planning.
    Zhu J; Penfold SN
    Med Phys; 2016 Jun; 43(6):2845-2854. PubMed ID: 27277033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration.
    Xie Y; Ainsley C; Yin L; Zou W; McDonough J; Solberg TD; Lin A; Teo BK
    Phys Med Biol; 2018 Mar; 63(5):055016. PubMed ID: 29513647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients.
    Landry G; Seco J; Gaudreault M; Verhaegen F
    Phys Med Biol; 2013 Oct; 58(19):6851-66. PubMed ID: 24025623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of proton stopping power estimation of silicone breast implants with single and dual-energy CT calibration techniques.
    Chacko MS; Grewal HS; Wu D; Sonnad JR
    J Appl Clin Med Phys; 2021 Sep; 22(9):159-170. PubMed ID: 34275175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron density and effective atomic number estimation in a maximum a posteriori framework for dual-energy computed tomography.
    Simard M; Bär E; Blais D; Bouchard H
    Med Phys; 2020 Sep; 47(9):4137-4149. PubMed ID: 32491193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A linear, separable two-parameter model for dual energy CT imaging of proton stopping power computation.
    Han D; Siebers JV; Williamson JF
    Med Phys; 2016 Jan; 43(1):600. PubMed ID: 26745952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions.
    España S; Paganetti H
    Phys Med Biol; 2010 Dec; 55(24):7557-71. PubMed ID: 21098912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust empirical parametrization of proton stopping power using dual energy CT.
    Taasti VT; Petersen JB; Muren LP; Thygesen J; Hansen DC
    Med Phys; 2016 Oct; 43(10):5547. PubMed ID: 27782721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of dual-energy CT to reduce proton beam range uncertainties.
    Bär E; Lalonde A; Royle G; Lu HM; Bouchard H
    Med Phys; 2017 Jun; 44(6):2332-2344. PubMed ID: 28295434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of proton therapy treatment planning for head tumors with a pencil beam algorithm on dual and single energy CT images.
    Hudobivnik N; Schwarz F; Johnson T; Agolli L; Dedes G; Tessonnier T; Verhaegen F; Thieke C; Belka C; Sommer WH; Parodi K; Landry G
    Med Phys; 2016 Jan; 43(1):495. PubMed ID: 26745942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical Note: Relative proton stopping power estimation from virtual monoenergetic images reconstructed from dual-layer computed tomography.
    Landry G; Dörringer F; Si-Mohamed S; Douek P; Abascal JFPJ; Peyrin F; Almeida IP; Verhaegen F; Rinaldi I; Parodi K; Rit S
    Med Phys; 2019 Apr; 46(4):1821-1828. PubMed ID: 30695108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of beam-hardening corrections on proton relative stopping power estimates from single- and dual-energy CT.
    Chacko MS; Wu D; Grewal HS; Sonnad JR
    J Appl Clin Med Phys; 2022 Sep; 23(9):e13711. PubMed ID: 35816460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.