These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24694813)

  • 1. [Quantitation of cellular phosphorylation dynamics by phosphoproteomics approaches].
    Ishihama Y; Imami K
    Yakugaku Zasshi; 2014; 134(4):521-7. PubMed ID: 24694813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways.
    Imami K; Sugiyama N; Imamura H; Wakabayashi M; Tomita M; Taniguchi M; Ueno T; Toi M; Ishihama Y
    Mol Cell Proteomics; 2012 Dec; 11(12):1741-57. PubMed ID: 22964224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteomic analysis reveals PAK2 as a therapeutic target for lapatinib resistance in HER2-positive breast cancer cells.
    Chang Y; Park KH; Lee JE; Han KC
    Biochem Biophys Res Commun; 2018 Oct; 505(1):187-193. PubMed ID: 30243723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a 5-plex SILAC method tuned for the quantitation of tyrosine phosphorylation dynamics.
    Tzouros M; Golling S; Avila D; Lamerz J; Berrera M; Ebeling M; Langen H; Augustin A
    Mol Cell Proteomics; 2013 Nov; 12(11):3339-49. PubMed ID: 23882028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine.
    Wu X; Xing X; Dowlut D; Zeng Y; Liu J; Liu X
    J Proteomics; 2019 Jan; 191():68-79. PubMed ID: 29621648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phosphoproteomics-based cancer molecular-targeting therapy and diagnostics].
    Ishihama Y; Wakabayashi M
    Gan To Kagaku Ryoho; 2012 Jul; 39(7):1019-25. PubMed ID: 22790034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells.
    Muñoz J; Heck AJ
    Methods Mol Biol; 2011; 767():297-312. PubMed ID: 21822884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.
    Wu CJ; Chen YW; Tai JH; Chen SH
    J Proteome Res; 2011 Mar; 10(3):1088-97. PubMed ID: 21210654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation.
    Borisova ME; Wagner SA; Beli P
    Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells.
    Ali NA; Molloy MP
    Proteomics; 2011 Aug; 11(16):3390-401. PubMed ID: 21751366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale proteomics analysis of the human kinome.
    Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H
    Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent findings and technological advances in phosphoproteomics for cells and tissues.
    von Stechow L; Francavilla C; Olsen JV
    Expert Rev Proteomics; 2015; 12(5):469-87. PubMed ID: 26400465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics.
    Dreier RF; Ahrné E; Broz P; Schmidt A
    J Proteome Res; 2019 Jan; 18(1):493-507. PubMed ID: 30387612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances and challenges in plant phosphoproteomics.
    Silva-Sanchez C; Li H; Chen S
    Proteomics; 2015 Mar; 15(5-6):1127-41. PubMed ID: 25429768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation.
    Nguyen V; Cao L; Lin JT; Hung N; Ritz A; Yu K; Jianu R; Ulin SP; Raphael BJ; Laidlaw DH; Brossay L; Salomon AR
    Mol Cell Proteomics; 2009 Nov; 8(11):2418-31. PubMed ID: 19605366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding cell signaling in cancer stem cells for targeted therapy - can phosphoproteomics help to reveal the secrets?
    Gruber W; Scheidt T; Aberger F; Huber CG
    Cell Commun Signal; 2017 Mar; 15(1):12. PubMed ID: 28356110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.