These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24695264)

  • 1. Classification of gait disorders following traumatic brain injury.
    Williams G; Lai D; Schache A; Morris ME
    J Head Trauma Rehabil; 2015; 30(2):E13-23. PubMed ID: 24695264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal deficits and kinematic classification of gait following a traumatic brain injury: a systematic review.
    Williams G; Galna B; Morris ME; Olver J
    J Head Trauma Rehabil; 2010; 25(5):366-74. PubMed ID: 20142759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of Lower Limb Spasticity Does Not Influence Mobility Outcome Following Traumatic Brain Injury: An Observational Study.
    Williams G; Banky M; Olver J
    J Head Trauma Rehabil; 2015; 30(5):E49-57. PubMed ID: 25310296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobility after traumatic brain injury: relationships with ankle joint power generation and motor skill level.
    Williams GP; Schache AG; Morris ME
    J Head Trauma Rehabil; 2013; 28(5):371-8. PubMed ID: 22613943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observational gait analysis in traumatic brain injury: accuracy of clinical judgment.
    Williams G; Morris ME; Schache A; McCrory P
    Gait Posture; 2009 Apr; 29(3):454-9. PubMed ID: 19109020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. People preferentially increase hip joint power generation to walk faster following traumatic brain injury.
    Williams G; Morris ME; Schache A; McCrory PR
    Neurorehabil Neural Repair; 2010; 24(6):550-8. PubMed ID: 20086196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distribution of positive work and power generation amongst the lower-limb joints during walking normalises following recovery from traumatic brain injury.
    Williams G; Schache AG
    Gait Posture; 2016 Jan; 43():265-9. PubMed ID: 26531767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporospatial characteristics of gait in patients with lower limb muscle hypertonia after traumatic brain injury.
    Chow JW; Yablon SA; Horn TS; Stokic DS
    Brain Inj; 2010; 24(13-14):1575-84. PubMed ID: 20973631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-selected walking speed predicts ability to run following traumatic brain injury.
    Williams G; Schache AG; Morris ME
    J Head Trauma Rehabil; 2013; 28(5):379-85. PubMed ID: 22647966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Running abnormalities after traumatic brain injury.
    Williams G; Schache A; Morris ME
    Brain Inj; 2013; 27(4):434-43. PubMed ID: 23473505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training conditions influence walking kinematics and self-selected walking speed in patients with neurological impairments.
    Williams G; Clark R; Schache A; Fini NA; Moore L; Morris ME; McCrory PR
    J Neurotrauma; 2011 Feb; 28(2):281-7. PubMed ID: 21174634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower extremity kinematics during walking and elliptical training in individuals with and without traumatic brain injury.
    Buster T; Burnfield J; Taylor AP; Stergiou N
    J Neurol Phys Ther; 2013 Dec; 37(4):176-86. PubMed ID: 24189335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a conceptual framework for retraining high-level mobility following traumatic brain injury: two case reports.
    Williams GP; Schache AG
    J Head Trauma Rehabil; 2010; 25(3):164-72. PubMed ID: 20473090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incidence of gait abnormalities after traumatic brain injury.
    Williams G; Morris ME; Schache A; McCrory PR
    Arch Phys Med Rehabil; 2009 Apr; 90(4):587-93. PubMed ID: 19345773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of gait and balance deficits after traumatic brain injury.
    Basford JR; Chou LS; Kaufman KR; Brey RH; Walker A; Malec JF; Moessner AM; Brown AW
    Arch Phys Med Rehabil; 2003 Mar; 84(3):343-9. PubMed ID: 12638101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle plantarflexor spasticity is not differentially disabling for those who are weak following traumatic brain injury.
    Williams G; Banky M; McKenzie D; Olver J
    Brain Inj; 2017; 31(2):193-198. PubMed ID: 27880057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability explained by strength, body composition and gait impairment in activity and participation measures for children with cerebral palsy: a multicentre study.
    Oeffinger D; Gorton G; Hassani S; Sison-Williamson M; Johnson B; Whitmer M; Romness M; Kryscio D; Tylkowski C; Bagley A
    Clin Rehabil; 2014 Oct; 28(10):1053-63. PubMed ID: 25013156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Categorization of gait patterns in adults with cerebral palsy: a clustering approach.
    Roche N; Pradon D; Cosson J; Robertson J; Marchiori C; Zory R
    Gait Posture; 2014 Jan; 39(1):235-40. PubMed ID: 23948331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal-spatial feature of gait after traumatic brain injury.
    Ochi F; Esquenazi A; Hirai B; Talaty M
    J Head Trauma Rehabil; 1999 Apr; 14(2):105-15. PubMed ID: 10191370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of environmental demands on locomotion after traumatic brain injury.
    Vallée M; McFadyen BJ; Swaine B; Doyon J; Cantin JF; Dumas D
    Arch Phys Med Rehabil; 2006 Jun; 87(6):806-13. PubMed ID: 16731216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.