These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24695456)

  • 1. Optogenetic patterning of whisker-barrel cortical system in transgenic rat expressing channelrhodopsin-2.
    Honjoh T; Ji ZG; Yokoyama Y; Sumiyoshi A; Shibuya Y; Matsuzaka Y; Kawashima R; Mushiake H; Ishizuka T; Yawo H
    PLoS One; 2014; 9(4):e93706. PubMed ID: 24695456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic conditioning of paradigm and pattern discrimination in the rat somatosensory system.
    Abe K; Yawo H
    PLoS One; 2017; 12(12):e0189439. PubMed ID: 29267341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic study of the response interaction among multi-afferent inputs in the barrel cortex of rats.
    Liu Y; Ohshiro T; Sakuragi S; Koizumi K; Mushiake H; Ishizuka T; Yawo H
    Sci Rep; 2019 Mar; 9(1):3917. PubMed ID: 30850696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells.
    Ji ZG; Ito S; Honjoh T; Ohta H; Ishizuka T; Fukazawa Y; Yawo H
    PLoS One; 2012; 7(3):e32699. PubMed ID: 22412908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative study of the somatosensory sensitization underlying cross-modal plasticity.
    Abe K; Yawo H
    PLoS One; 2018; 13(12):e0208089. PubMed ID: 30517160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice.
    Park S; Bandi A; Lee CR; Margolis DJ
    Elife; 2016 Jun; 5():. PubMed ID: 27269285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian Optogenetic-Noise-Photostimulation on the Brain Amplifies Somatosensory-Evoked Field Potentials.
    Huidobro N; Mendez-Fernandez A; Mendez-Balbuena I; Gutierrez R; Kristeva R; Manjarrez E
    Front Neurosci; 2017; 11():464. PubMed ID: 28912671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer 4 barrel cortex neurons retain their response properties during whisker replacement.
    Maier E; Brecht M
    J Neurophysiol; 2018 Nov; 120(5):2218-2231. PubMed ID: 30044148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2.
    Kubota S; Sidikejiang W; Kudo M; Inoue KI; Umeda T; Takada M; Seki K
    J Physiol; 2019 Oct; 597(19):5025-5040. PubMed ID: 31397900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-sensitive dye imaging reveals shifting spatiotemporal spread of whisker-induced activity in rat barrel cortex.
    Lustig BR; Friedman RM; Winberry JE; Ebner FF; Roe AW
    J Neurophysiol; 2013 May; 109(9):2382-92. PubMed ID: 23390314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices.
    Casas-Torremocha D; Clascá F; Núñez Á
    Front Neural Circuits; 2017; 11():69. PubMed ID: 29021744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical layer 6 control of sensory responses in higher-order thalamus.
    Ansorge J; Humanes-Valera D; Pauzin FP; Schwarz MK; Krieger P
    J Physiol; 2020 Sep; 598(18):3973-4001. PubMed ID: 32602570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic barrel representations with various patterns of neonatal whisker deafferentation in rats.
    Shin JW; Lee DJ; Jung HS; Sohn NW
    Int J Dev Neurosci; 2005 Oct; 23(6):537-44. PubMed ID: 15963678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic control of targeted peripheral axons in freely moving animals.
    Towne C; Montgomery KL; Iyer SM; Deisseroth K; Delp SL
    PLoS One; 2013; 8(8):e72691. PubMed ID: 23991144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ipsilateral-Dominant Control of Limb Movements in Rodent Posterior Parietal Cortex.
    Soma S; Yoshida J; Kato S; Takahashi Y; Nonomura S; Sugimura YK; Ríos A; Kawabata M; Kobayashi K; Kato F; Sakai Y; Isomura Y
    J Neurosci; 2019 Jan; 39(3):485-502. PubMed ID: 30478035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic noise-photostimulation on the brain increases somatosensory spike firing responses.
    Huidobro N; De la Torre-Valdovinos B; Mendez A; Treviño M; Arias-Carrion O; Chavez F; Gutierrez R; Manjarrez E
    Neurosci Lett; 2018 Jan; 664():51-57. PubMed ID: 29128628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, function, and cortical representation of the rat submandibular whisker trident.
    Thé L; Wallace ML; Chen CH; Chorev E; Brecht M
    J Neurosci; 2013 Mar; 33(11):4815-24. PubMed ID: 23486952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural coding in barrel cortex during whisker-guided locomotion.
    Sofroniew NJ; Vlasov YA; Hires SA; Freeman J; Svoboda K
    Elife; 2015 Dec; 4():. PubMed ID: 26701910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural and hemodynamic responses to optogenetic and sensory stimulation in the rat somatosensory cortex.
    Iordanova B; Vazquez AL; Poplawsky AJ; Fukuda M; Kim SG
    J Cereb Blood Flow Metab; 2015 Jun; 35(6):922-32. PubMed ID: 25669905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.