These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24695457)

  • 21. SERS-based immunoassay using a gold array-embedded gradient microfluidic chip.
    Lee M; Lee K; Kim KH; Oh KW; Choo J
    Lab Chip; 2012 Oct; 12(19):3720-7. PubMed ID: 22797080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer.
    Jiang X; Yang M; Meng Y; Jiang W; Zhan J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6902-8. PubMed ID: 23820578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ microfluidic SERS assay for monitoring enzymatic breakdown of organophosphates.
    Liberman V; Hamad-Schifferli K; Thorsen TA; Wick ST; Carr PA
    Nanoscale; 2015 Jul; 7(25):11013-23. PubMed ID: 26041657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering.
    Hassoun M; Rüger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J
    Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system.
    Ackermann KR; Henkel T; Popp J
    Chemphyschem; 2007 Dec; 8(18):2665-70. PubMed ID: 18061914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semi-quantitative analysis of gentian violet by surface-enhanced Raman spectroscopy using silver colloids.
    Liu F; Gu H; Yuan X; Dong X
    Appl Spectrosc; 2010 Nov; 64(11):1301-7. PubMed ID: 21073801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
    Parisi J; Su L; Lei Y
    Lab Chip; 2013 Apr; 13(8):1501-8. PubMed ID: 23459704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering.
    Li J; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):994-1000. PubMed ID: 16875867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface enhanced Raman evidence for Ag+ complexes of adenine, deoxyadenosine and 5'-dAMP formed in silver colloids.
    Papadopoulou E; Bell SE
    Analyst; 2010 Dec; 135(12):3034-7. PubMed ID: 20877822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation.
    Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S
    Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method.
    Zhang C; Wang K; Han D; Pang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():387-91. PubMed ID: 24322757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isotope edited internal standard method for quantitative surface-enhanced Raman spectroscopy.
    Zhang D; Xie Y; Deb SK; Davison VJ; Ben-Amotz D
    Anal Chem; 2005 Jun; 77(11):3563-9. PubMed ID: 15924390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels.
    Oh YJ; Jeong KH
    Lab Chip; 2014 Mar; 14(5):865-8. PubMed ID: 24452813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid.
    Guingab JD; Lauly B; Smith BW; Omenetto N; Winefordner JD
    Talanta; 2007 Nov; 74(2):271-4. PubMed ID: 18371640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photochemical decoration of silver nanoparticles on magnetic microspheres as substrates for the detection of adenine by surface-enhanced Raman scattering.
    Alula MT; Yang J
    Anal Chim Acta; 2014 Feb; 812():114-20. PubMed ID: 24491771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system.
    Strehle KR; Cialla D; Rösch P; Henkel T; Köhler M; Popp J
    Anal Chem; 2007 Feb; 79(4):1542-7. PubMed ID: 17297953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.