These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24695457)

  • 41. Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: from development to method validation.
    De Bleye C; Dumont E; Rozet E; Sacré PY; Chavez PF; Netchacovitch L; Piel G; Hubert P; Ziemons E
    Talanta; 2013 Nov; 116():899-905. PubMed ID: 24148492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale.
    Chen HY; Lin MH; Wang CY; Chang YM; Gwo S
    J Am Chem Soc; 2015 Oct; 137(42):13698-705. PubMed ID: 26469218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases.
    Badr Y; Mahmoud MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(3):639-45. PubMed ID: 16024274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis.
    Stokes DL; Chi Z; Vo-Dinh T
    Appl Spectrosc; 2004 Mar; 58(3):292-8. PubMed ID: 15035709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms.
    Knauer M; Ivleva NP; Liu X; Niessner R; Haisch C
    Anal Chem; 2010 Apr; 82(7):2766-72. PubMed ID: 20196561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device.
    Walter A; März A; Schumacher W; Rösch P; Popp J
    Lab Chip; 2011 Mar; 11(6):1013-21. PubMed ID: 21283864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatially focused deposition of capillary electrophoresis effluent onto surface-enhanced Raman-active substrates for off-column spectroscopy.
    DeVault GL; Sepaniak MJ
    Electrophoresis; 2001 Jul; 22(11):2303-11. PubMed ID: 11504066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discrete free-surface millifluidics for rapid capture and analysis of airborne molecules using surface-enhanced Raman spectroscopy.
    Piorek BD; Andreou C; Moskovits M; Meinhart CD
    Anal Chem; 2014 Jan; 86(2):1061-6. PubMed ID: 24393015
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Study on the surface-enhanced Raman spectrum of phenylalanine on silver sols].
    Liu WH; Yang W; Zhang D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Feb; 28(2):343-6. PubMed ID: 18479019
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative surface-enhanced Raman spectroscopy based analysis of microRNA mixtures.
    Driskell JD; Primera-Pedrozo OM; Dluhy RA; Zhao Y; Tripp RA
    Appl Spectrosc; 2009 Oct; 63(10):1107-14. PubMed ID: 19843360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection of low concentrations of ampicillin in milk.
    Andreou C; Mirsafavi R; Moskovits M; Meinhart CD
    Analyst; 2015 Aug; 140(15):5003-5. PubMed ID: 26087055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic-SERS devices for one shot limit-of-detection.
    Kim D; Campos AR; Datt A; Gao Z; Rycenga M; Burrows ND; Greeneltch NG; Mirkin CA; Murphy CJ; Van Duyne RP; Haynes CL
    Analyst; 2014 Jul; 139(13):3227-3234. PubMed ID: 24756225
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tuning the surface-enhanced Raman scattering effect to different molecular groups by switching the silver colloid solution pH.
    Kazanci M; Schulte JP; Douglas C; Fratzl P; Pink D; Smith-Palmer T
    Appl Spectrosc; 2009 Feb; 63(2):214-23. PubMed ID: 19215652
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex.
    Birke RL; Znamenskiy V; Lombardi JR
    J Chem Phys; 2010 Jun; 132(21):214707. PubMed ID: 20528041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques.
    Wang Z; Zong S; Wang Z; Wu L; Chen P; Yun B; Cui Y
    Nanotechnology; 2017 Mar; 28(10):105501. PubMed ID: 28139463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Surface enhanced Raman scattering (SERS) spectra of AMP and DNA in silver sol].
    Shen HB; Xia JF; Zhang F; Yang HF; Zhang ZR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Dec; 21(6):798-800. PubMed ID: 12958898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of tricyclazole content in paddy rice by surface enhanced Raman spectroscopy.
    Tang H; Fang D; Li Q; Cao P; Geng J; Sui T; Wang X; Iqbal J; Du Y
    J Food Sci; 2012 May; 77(5):T105-9. PubMed ID: 22489549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.