These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24695587)

  • 1. Carbon dioxide conversion into hydrocarbon fuels on defective graphene-supported Cu nanoparticles from first principles.
    Lim DH; Jo JH; Shin DY; Wilcox J; Ham HC; Nam SW
    Nanoscale; 2014 May; 6(10):5087-92. PubMed ID: 24695587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide.
    Hossain MN; Wen J; Chen A
    Sci Rep; 2017 Jun; 7(1):3184. PubMed ID: 28600564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study.
    Liu Y; Zhao J; Cai Q
    Phys Chem Chem Phys; 2016 Feb; 18(7):5491-8. PubMed ID: 26863176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Functionalized Copper Nanoparticles for Solar-Driven Conversion of Carbon Dioxide to Methane.
    Esmaeilirad M; Kondori A; Song B; Ruiz Belmonte A; Wei J; Kucuk K; Khanvilkar SM; Efimoff E; Chen W; Segre CU; Shahbazian-Yassar R; Asadi M
    ACS Nano; 2020 Feb; 14(2):2099-2108. PubMed ID: 31971779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface.
    Bernstein NJ; Akhade SA; Janik MJ
    Phys Chem Chem Phys; 2014 Jul; 16(27):13708-17. PubMed ID: 24722651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using of TiN-nanotubes and Cu-nanoparticles for conversion of CO2 to hydrocarbon fuels.
    Mahdavian L
    J Mol Model; 2015 Jul; 21(7):187. PubMed ID: 26142907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst.
    Manthiram K; Beberwyck BJ; Alivisatos AP
    J Am Chem Soc; 2014 Sep; 136(38):13319-25. PubMed ID: 25137433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational studies of electrochemical CO2 reduction on subnanometer transition metal clusters.
    Liu C; He H; Zapol P; Curtiss LA
    Phys Chem Chem Phys; 2014 Dec; 16(48):26584-99. PubMed ID: 25158148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption, activation, and conversion of carbon dioxide on small copper-tin nanoclusters.
    Muthuperiyanayagam A; Nabi AG; Zhao Q; Aman-Ur-Rehman ; Di Tommaso D
    Phys Chem Chem Phys; 2023 May; 25(19):13429-13441. PubMed ID: 37144396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of Carbon Dioxide on Nickel: Role of CO in the Competing Interplay between Oxygen and Graphene.
    Monachino E; Greiner M; Knop-Gericke A; Schlögl R; Dri C; Vesselli E; Comelli G
    J Phys Chem Lett; 2014 Jun; 5(11):1929-34. PubMed ID: 26273875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.
    Zhang S; Kang P; Bakir M; Lapides AM; Dares CJ; Meyer TJ
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15809-14. PubMed ID: 26668386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical CO
    Xiao X; Xu Y; Lv X; Xie J; Liu J; Yu C
    J Colloid Interface Sci; 2019 Jun; 545():1-7. PubMed ID: 30861477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks.
    Yang F; Chen A; Deng PL; Zhou Y; Shahid Z; Liu H; Xia BY
    Chem Sci; 2019 Sep; 10(34):7975-7981. PubMed ID: 31853353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding of Electrochemical Mechanisms for CO
    Li N; Chen X; Ong WJ; MacFarlane DR; Zhao X; Cheetham AK; Sun C
    ACS Nano; 2017 Nov; 11(11):10825-10833. PubMed ID: 28892617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Ren M; Zheng H; Lei J; Zhang J; Wang X; Yakobson BI; Yao Y; Tour JM
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41223-41229. PubMed ID: 32830950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-rate and selective conversion of CO
    Obasanjo CA; Gao G; Crane J; Golovanova V; García de Arquer FP; Dinh CT
    Nat Commun; 2023 Jun; 14(1):3176. PubMed ID: 37264000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical reduction of CO
    He H; Jagvaral Y
    Phys Chem Chem Phys; 2017 May; 19(18):11436-11446. PubMed ID: 28425555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111).
    Xiao H; Cheng T; Goddard WA; Sundararaman R
    J Am Chem Soc; 2016 Jan; 138(2):483-6. PubMed ID: 26716884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons.
    Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.