These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 24695648)

  • 1. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.
    Vaikuntanathan V; Sivakumar D
    Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture.
    Vaikuntanathan V; Sivakumar D
    Langmuir; 2016 Mar; 32(10):2399-409. PubMed ID: 26885767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional motion of impacting drops on dual-textured surfaces.
    Vaikuntanathan V; Sivakumar D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036315. PubMed ID: 23031021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
    Yeh KY; Chen LJ; Chang JY
    Langmuir; 2008 Jan; 24(1):245-51. PubMed ID: 18067331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State.
    Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P
    Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stable intermediate wetting state after a water drop contacts the bottom of a microchannel or is placed on a single corner.
    Luo C; Xiang M; Heng X
    Langmuir; 2012 Jun; 28(25):9554-61. PubMed ID: 22639865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition between superhydrophobic states on rough surfaces.
    Patankar NA
    Langmuir; 2004 Aug; 20(17):7097-102. PubMed ID: 15301493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid drop splashing on smooth, rough, and textured surfaces.
    Xu L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056316. PubMed ID: 17677173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach.
    Patankar NA
    Langmuir; 2010 Jun; 26(11):8941-5. PubMed ID: 20158175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-vapor transition on patterned solid surfaces in a shear flow.
    Yao W; Ren W
    J Chem Phys; 2015 Dec; 143(24):244701. PubMed ID: 26723696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.
    Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C
    Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanodrop on a nanorough solid surface: density functional theory considerations.
    Berim GO; Ruckenstein E
    J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition.
    Garcia-Gonzalez D; Corrales TP; Dacunzi M; Kappl M
    Langmuir; 2022 Dec; 38(48):14666-14672. PubMed ID: 36410035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates.
    Afferrante L; Carbone G
    J Phys Condens Matter; 2018 Jan; 30(4):045001. PubMed ID: 29231182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drop spreading on a superhydrophobic surface: pinned contact line and bending liquid surface.
    Wang Y; Andrews JE; Hu L; Das S
    Phys Chem Chem Phys; 2017 Jun; 19(22):14442-14452. PubMed ID: 28530761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.