These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24695703)

  • 1. Behavioral oscillations in attention: rhythmic α pulses mediated through θ band.
    Song K; Meng M; Chen L; Zhou K; Luo H
    J Neurosci; 2014 Apr; 34(14):4837-44. PubMed ID: 24695703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral oscillation in priming: competing perceptual predictions conveyed in alternating theta-band rhythms.
    Huang Y; Chen L; Luo H
    J Neurosci; 2015 Feb; 35(6):2830-7. PubMed ID: 25673869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Unattended Stimuli Depends on the Phase of Prestimulus Neural Oscillations.
    Harris AM; Dux PE; Mattingley JB
    J Neurosci; 2018 Mar; 38(12):3092-3101. PubMed ID: 29459372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention.
    Harris AM; Dux PE; Jones CN; Mattingley JB
    Neuroimage; 2017 May; 152():171-183. PubMed ID: 28274832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation.
    de Graaf TA; Gross J; Paterson G; Rusch T; Sack AT; Thut G
    PLoS One; 2013; 8(3):e60035. PubMed ID: 23555873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theta oscillations modulate attentional search performance periodically.
    Dugué L; Marque P; VanRullen R
    J Cogn Neurosci; 2015 May; 27(5):945-58. PubMed ID: 25390199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
    Ronconi L; Melcher D
    J Neurosci; 2017 Nov; 37(44):10636-10644. PubMed ID: 28972130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Mechanisms of Sustained Attention Are Rhythmic.
    Helfrich RF; Fiebelkorn IC; Szczepanski SM; Lin JJ; Parvizi J; Knight RT; Kastner S
    Neuron; 2018 Aug; 99(4):854-865.e5. PubMed ID: 30138591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking Transient Changes in the Neural Frequency Architecture: Harmonic Relationships between Theta and Alpha Peaks Facilitate Cognitive Performance.
    Rodriguez-Larios J; Alaerts K
    J Neurosci; 2019 Aug; 39(32):6291-6298. PubMed ID: 31175211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention Periodically Binds Visual Features As Single Events Depending on Neural Oscillations Phase-Locked to Action.
    Nakayama R; Motoyoshi I
    J Neurosci; 2019 May; 39(21):4153-4161. PubMed ID: 30886011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum.
    Keitel C; Keitel A; Benwell CSY; Daube C; Thut G; Gross J
    J Neurosci; 2019 Apr; 39(16):3119-3129. PubMed ID: 30770401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential sampling of visual objects during sustained attention.
    Jia J; Liu L; Fang F; Luo H
    PLoS Biol; 2017 Jun; 15(6):e2001903. PubMed ID: 28658261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta Rhythmic Neuronal Activity and Reaction Times Arising from Cortical Receptive Field Interactions during Distributed Attention.
    Kienitz R; Schmiedt JT; Shapcott KA; Kouroupaki K; Saunders RC; Schmid MC
    Curr Biol; 2018 Aug; 28(15):2377-2387.e5. PubMed ID: 30017481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No changes in parieto-occipital alpha during neural phase locking to visual quasi-periodic theta-, alpha-, and beta-band stimulation.
    Keitel C; Benwell CSY; Thut G; Gross J
    Eur J Neurosci; 2018 Oct; 48(7):2551-2565. PubMed ID: 29737585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention.
    Han HB; Lee KE; Choi JH
    eNeuro; 2019; 6(6):. PubMed ID: 31685677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention.
    Fiebelkorn IC; Pinsk MA; Kastner S
    Neuron; 2018 Aug; 99(4):842-853.e8. PubMed ID: 30138590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional differences of low- and high-frequency oscillatory dynamics during illusory border perception.
    Bosman CA; Zamorano F; Aboitiz F
    Brain Res; 2010 Mar; 1319():92-102. PubMed ID: 20064488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct contributions of alpha and theta rhythms to perceptual and attentional sampling.
    Michel R; Dugué L; Busch NA
    Eur J Neurosci; 2022 Jun; 55(11-12):3025-3039. PubMed ID: 33609313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Transcranial Pulsed Current Stimulation at 4 and 75 Hz on Electroencephalography Theta and High Gamma Band Power: A Pilot Study.
    Dissanayaka T; Zoghi M; Hill AT; Farrell M; Egan G; Jaberzadeh S
    Brain Connect; 2020 Nov; 10(9):520-531. PubMed ID: 32962422
    [No Abstract]   [Full Text] [Related]  

  • 20. Cortical dynamics of selective attention to somatosensory events.
    Dockstader C; Cheyne D; Tannock R
    Neuroimage; 2010 Jan; 49(2):1777-85. PubMed ID: 19781649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.