These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24695710)

  • 1. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons.
    Seidl AH; Rubel EW; Barría A
    J Neurosci; 2014 Apr; 34(14):4914-9. PubMed ID: 24695710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem.
    Seidl AH; Rubel EW
    Glia; 2016 Apr; 64(4):487-94. PubMed ID: 26556176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic quail as a model for research in the avian nervous system: a comparative study of the auditory brainstem.
    Seidl AH; Sanchez JT; Schecterson L; Tabor KM; Wang Y; Kashima DT; Poynter G; Huss D; Fraser SE; Lansford R; Rubel EW
    J Comp Neurol; 2013 Jan; 521(1):5-23. PubMed ID: 22806400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.
    Yamada R; Okuda H; Kuba H; Nishino E; Ishii TM; Ohmori H
    J Neurosci; 2013 Feb; 33(9):3927-38. PubMed ID: 23447603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A circuit for coding interaural time differences in the chick brainstem.
    Overholt EM; Rubel EW; Hyson RL
    J Neurosci; 1992 May; 12(5):1698-708. PubMed ID: 1578264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the delay lines in the nucleus laminaris of the chicken embryo revealed by optical imaging.
    Görlich A; Illy M; Friauf E; Wagner H; Luksch H; Löhrke S
    Neuroscience; 2010 Jun; 168(2):564-72. PubMed ID: 20394725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection.
    Seidl AH; Rubel EW; Harris DM
    J Neurosci; 2010 Jan; 30(1):70-80. PubMed ID: 20053889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit.
    Lu Y; Liu Y; Curry RJ
    J Physiol; 2018 May; 596(10):1981-1997. PubMed ID: 29572827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A circuit for detection of interaural time differences in the brain stem of the barn owl.
    Carr CE; Konishi M
    J Neurosci; 1990 Oct; 10(10):3227-46. PubMed ID: 2213141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-specific projections of individual neurons in chick brainstem auditory nuclei.
    Young SR; Rubel EW
    J Neurosci; 1983 Jul; 3(7):1373-8. PubMed ID: 6864252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).
    MacLeod KM; Soares D; Carr CE
    J Comp Neurol; 2006 Mar; 495(2):185-201. PubMed ID: 16435285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological characterization of synaptic connections between layer VI cortical cells and neurons of the nucleus reticularis thalami in juvenile rats.
    Gentet LJ; Ulrich D
    Eur J Neurosci; 2004 Feb; 19(3):625-33. PubMed ID: 14984412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis.
    Wang X; Hong H; Brown DH; Sanchez JT; Wang Y
    eNeuro; 2017; 4(2):. PubMed ID: 28413822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Test of the Stereausis Hypothesis for Sound Localization in Mammals.
    Plauška A; van der Heijden M; Borst JGG
    J Neurosci; 2017 Jul; 37(30):7278-7289. PubMed ID: 28659280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways.
    Burger RM; Cramer KS; Pfeiffer JD; Rubel EW
    J Comp Neurol; 2005 Jan; 481(1):6-18. PubMed ID: 15558730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of glutamatergic and GABAergic neurotransmission in the chick nucleus laminaris: role of N-type calcium channels.
    Lu Y
    Neuroscience; 2009 Dec; 164(3):1009-19. PubMed ID: 19751802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines.
    Beckius GE; Batra R; Oliver DL
    J Neurosci; 1999 Apr; 19(8):3146-61. PubMed ID: 10191328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of a depolarizing GABAergic input in an auditory coincidence detection circuit.
    Tang ZQ; Gao H; Lu Y
    J Neurophysiol; 2009 Sep; 102(3):1672-83. PubMed ID: 19571192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.