BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24695790)

  • 1. 18β-Glycyrrhetinic acid suppresses cell proliferation through inhibiting thromboxane synthase in non-small cell lung cancer.
    Huang RY; Chu YL; Huang QC; Chen XM; Jiang ZB; Zhang X; Zeng X
    PLoS One; 2014; 9(4):e93690. PubMed ID: 24695790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycyrrhizin suppresses lung adenocarcinoma cell growth through inhibition of thromboxane synthase.
    Huang RY; Chu YL; Jiang ZB; Chen XM; Zhang X; Zeng X
    Cell Physiol Biochem; 2014; 33(2):375-88. PubMed ID: 24556579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 18β-glycyrrhetinic acid suppresses Lewis lung cancer growth through protecting immune cells from ferroptosis.
    Ma X; Sun Z; Chen H; Cao L; Zhao S; Fan L; Zhao C; Yin S; Hu H
    Cancer Chemother Pharmacol; 2024 Jun; 93(6):575-585. PubMed ID: 38383823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells.
    Song J; Ko HS; Sohn EJ; Kim B; Kim JH; Kim HJ; Kim C; Kim JE; Kim SH
    Bioorg Med Chem Lett; 2014 Feb; 24(4):1188-91. PubMed ID: 24461294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts.
    Hung CF; Hsiao CY; Hsieh WH; Li HJ; Tsai YJ; Lin CN; Chang HH; Wu NL
    PLoS One; 2017; 12(8):e0182981. PubMed ID: 28813533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 18β-Glycyrrhetinic acid potently inhibits Kv1.3 potassium channels and T cell activation in human Jurkat T cells.
    Fu XX; Du LL; Zhao N; Dong Q; Liao YH; Du YM
    J Ethnopharmacol; 2013 Jul; 148(2):647-54. PubMed ID: 23707333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway.
    Cai H; Chen X; Zhang J; Wang J
    J Nat Med; 2018 Jan; 72(1):252-259. PubMed ID: 29098529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [18β-glycyrrhetinic acid piperazine derivative A30 inhibits the proliferation of SMMC-7721 hepatoma cells].
    Zhong L
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2017 Sep; 33(9):1212-1216. PubMed ID: 29089079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective effects of 18β-glycyrrhetinic acid on pulmonary arterial hypertension via regulation of Rho A/Rho kinsase pathway.
    Zhang M; Chang Z; Zhang P; Jing Z; Yan L; Feng J; Hu Z; Xu Q; Zhou W; Ma P; Hao Y; Zhou R
    Chem Biol Interact; 2019 Sep; 311():108749. PubMed ID: 31325423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 18β-glycyrrhetinic acid attenuates anandamide-induced adiposity and high-fat diet induced obesity.
    Park M; Lee JH; Choi JK; Hong YD; Bae IH; Lim KM; Park YH; Ha H
    Mol Nutr Food Res; 2014 Jul; 58(7):1436-46. PubMed ID: 24687644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thromboxane A2 exerts promoting effects on cell proliferation through mediating cyclooxygenase-2 signal in lung adenocarcinoma cells.
    Huang RY; Li SS; Guo HZ; Huang Y; Zhang X; Li MY; Chen GG; Zeng X
    J Cancer Res Clin Oncol; 2014 Mar; 140(3):375-86. PubMed ID: 24384873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Methylnitrosamino-1-3-pyridyl-1-butanone (NNK) promotes lung cancer cell survival by stimulating thromboxane A2 and its receptor.
    Huang RY; Li MY; Hsin MK; Underwood MJ; Ma LT; Mok TS; Warner TD; Chen GG
    Oncogene; 2011 Jan; 30(1):106-16. PubMed ID: 20818420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 18β-glycyrrhetinic Acid Modulated Autophagy is Cytotoxic to Breast Cancer Cells.
    Hsu YC; Hsieh WC; Chen SH; Li YZ; Liao HF; Lin MY; Sheu SM
    Int J Med Sci; 2023; 20(4):444-454. PubMed ID: 37057216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycyrrhetinic acid induces cytoprotective autophagy via the inositol-requiring enzyme 1α-c-Jun N-terminal kinase cascade in non-small cell lung cancer cells.
    Tang ZH; Zhang LL; Li T; Lu JH; Ma DL; Leung CH; Chen XP; Jiang HL; Wang YT; Lu JJ
    Oncotarget; 2015 Dec; 6(41):43911-26. PubMed ID: 26549806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 18β-Glycyrrhetinic acid ameliorates endoplasmic reticulum stress-induced inflammation in pulmonary arterial hypertension through PERK/eIF2α/NF-κB signaling.
    Wang JL; Liu H; Jing ZC; Zhao F; Zhou R
    Chin J Physiol; 2022; 65(4):187-198. PubMed ID: 36073567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemopreventive effect of 18β-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2).
    Hasan SK; Siddiqi A; Nafees S; Ali N; Rashid S; Ali R; Shahid A; Sultana S
    Mol Cell Biochem; 2016 May; 416(1-2):169-77. PubMed ID: 27116616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The licorice pentacyclic triterpenoid component 18β-glycyrrhetinic acid enhances the activity of antibiotics against strains of methicillin-resistant Staphylococcus aureus.
    de Breij A; Karnaoukh TG; Schrumpf J; Hiemstra PS; Nibbering PH; van Dissel JT; de Visser PC
    Eur J Clin Microbiol Infect Dis; 2016 Apr; 35(4):555-62. PubMed ID: 26780691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-κB pathways.
    Su L; Wang Z; Huang F; Lan R; Chen X; Han D; Zhang L; Zhang W; Hong J
    Environ Toxicol Pharmacol; 2018 Jun; 60():82-90. PubMed ID: 29677640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro growth inhibitory effect of selected 18β-glycyrrhetinic acid esters on Theileriaannulata.
    Buvanesvaragurunathan K; Ganesh J; Nagul Kumar S; Porchezhiyan V; Radha A; Azhahianambi P; Pandikumar P; Ignacimuthu S
    Exp Parasitol; 2022; 236-237():108258. PubMed ID: 35421387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 18β-glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice.
    Ma X; Chen H; Cao L; Zhao S; Zhao C; Yin S; Hu H
    Phytother Res; 2021 Dec; 35(12):6932-6943. PubMed ID: 34709693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.