These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24696122)
21. In vitro fabrication of a tissue engineered human cardiovascular patch for future use in cardiovascular surgery. Yang C; Sodian R; Fu P; Lüders C; Lemke T; Du J; Hübler M; Weng Y; Meyer R; Hetzer R Ann Thorac Surg; 2006 Jan; 81(1):57-63. PubMed ID: 16368335 [TBL] [Abstract][Full Text] [Related]
22. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. El-Ayoubi R; DeGrandpré C; DiRaddo R; Yousefi AM; Lavigne P J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation. Chung CA; Chen CW; Chen CP; Tseng CS Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558 [TBL] [Abstract][Full Text] [Related]
24. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336 [TBL] [Abstract][Full Text] [Related]
25. Induction of ectopic bone formation by using human periosteal cells in combination with a novel scaffold technology. Schantz JT; Hutmacher DW; Chim H; Ng KW; Lim TC; Teoh SH Cell Transplant; 2002; 11(2):125-38. PubMed ID: 12099636 [TBL] [Abstract][Full Text] [Related]
26. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896 [TBL] [Abstract][Full Text] [Related]
27. Optimization of scaffold design for bone tissue engineering: A computational and experimental study. Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449 [TBL] [Abstract][Full Text] [Related]
29. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Carlberg B; Axell MZ; Nannmark U; Liu J; Kuhn HG Biomed Mater; 2009 Aug; 4(4):045004. PubMed ID: 19567936 [TBL] [Abstract][Full Text] [Related]
30. Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro. Chunqiu Z; Xizheng Z; Han W; Daqing H; Jing G Med Hypotheses; 2006; 67(6):1414-8. PubMed ID: 16846697 [TBL] [Abstract][Full Text] [Related]
31. A finite element prediction of strain on cells in a highly porous collagen-glycosaminoglycan scaffold. Stops AJ; McMahon LA; O'Mahoney D; Prendergast PJ; McHugh PE J Biomech Eng; 2008 Dec; 130(6):061001. PubMed ID: 19045530 [TBL] [Abstract][Full Text] [Related]
32. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
33. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Johnson T; Bahrampourian R; Patel A; Mequanint K Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448 [TBL] [Abstract][Full Text] [Related]
34. Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage. Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC Tissue Eng Part A; 2014 May; 20(9-10):1476-85. PubMed ID: 24377881 [TBL] [Abstract][Full Text] [Related]
35. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
36. In vitro analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering. Ergun A; Yu X; Valdevit A; Ritter A; Kalyon DM J Biomed Mater Res A; 2011 Dec; 99(3):354-66. PubMed ID: 22021183 [TBL] [Abstract][Full Text] [Related]
37. Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Lu H; Hoshiba T; Kawazoe N; Koda I; Song M; Chen G Biomaterials; 2011 Dec; 32(36):9658-66. PubMed ID: 21937104 [TBL] [Abstract][Full Text] [Related]
38. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Bidan CM; Kommareddy KP; Rumpler M; Kollmannsberger P; Fratzl P; Dunlop JW Adv Healthc Mater; 2013 Jan; 2(1):186-94. PubMed ID: 23184876 [TBL] [Abstract][Full Text] [Related]
39. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
40. Laser printing of cells into 3D scaffolds. Ovsianikov A; Gruene M; Pflaum M; Koch L; Maiorana F; Wilhelmi M; Haverich A; Chichkov B Biofabrication; 2010 Mar; 2(1):014104. PubMed ID: 20811119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]