BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2469616)

  • 1. Cyclic nucleotides regulate collagen production by human intestinal smooth muscle cells.
    Perr HA; Graham MF; Diegelmann RF; Downs RW
    Gastroenterology; 1989 Jun; 96(6):1521-8. PubMed ID: 2469616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells.
    Eiden LE; Hotchkiss AJ
    Neuropeptides; 1983 Dec; 4(1):1-9. PubMed ID: 6199686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cyclic AMP elevating agents on bradykinin- and carbachol-induced signal transduction in canine cultured tracheal smooth muscle cells.
    Yang CM; Hsia HC; Luo SF; Hsieh JT; Ong R
    Br J Pharmacol; 1994 Jul; 112(3):781-8. PubMed ID: 7921603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of cyclic nucleotides on secretin secretion in canine duodenal mucosa in vitro.
    Murthy SN; Lavy A; Cassey CA; Morgantini DS; Dinoso VP; Chang TM
    Peptides; 1986; 7(2):357-63. PubMed ID: 2426687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cyclic AMP levels in primary cultures of human tracheal smooth muscle cells.
    Hall IP; Widdop S; Townsend P; Daykin K
    Br J Pharmacol; 1992 Oct; 107(2):422-8. PubMed ID: 1384913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of proliferation, but not of Ca2+ mobilization, by cyclic AMP and GMP in rabbit aortic smooth-muscle cells.
    Assender JW; Southgate KM; Hallett MB; Newby AC
    Biochem J; 1992 Dec; 288 ( Pt 2)(Pt 2):527-32. PubMed ID: 1281407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic adenosine monophosphate (cAMP) increases natriuretic peptide receptor C (NPR-C) expression in human aortic smooth muscle cells.
    Puggina E; Sellitti D
    Mol Cell Endocrinol; 2004 Apr; 219(1-2):161-9. PubMed ID: 15149737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forskolin and isoproterenol effect discrete responses on epidermal growth factor induced DNA synthesis in aortic smooth muscle cells.
    Venance SL; Bennett BM; Pang SC
    Can J Physiol Pharmacol; 1993; 71(10-11):800-5. PubMed ID: 7511481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of muscarinic receptor-induced inositol phospholipid hydrolysis by caffeine, beta-adrenoceptors and protein kinase C in intestinal smooth muscle.
    Prestwich SA; Bolton TB
    Br J Pharmacol; 1995 Feb; 114(3):602-11. PubMed ID: 7537591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between cyclic adenosine monophosphate and prostaglandin output by dispersed cells from human amnion and decidua.
    Warrick C; Skinner K; Mitchell BF; Challis JR
    Am J Obstet Gynecol; 1985 Sep; 153(1):66-71. PubMed ID: 2412440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP-mediated modulation of the production of the second component of human complement by monocytes.
    Lappin D; Whaley K
    Int Arch Allergy Appl Immunol; 1981; 65(1):85-90. PubMed ID: 6260693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP inhibits the synthesis and release of prolactin from human decidual cells.
    Handwerger S; Harman I; Costello A; Markoff E
    Mol Cell Endocrinol; 1987 Mar; 50(1-2):99-106. PubMed ID: 2438170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of histamine-stimulated inositol phospholipid hydrolysis by agents which increase cyclic AMP levels in bovine tracheal smooth muscle.
    Hall IP; Donaldson J; Hill SJ
    Br J Pharmacol; 1989 Jun; 97(2):603-13. PubMed ID: 2547479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cyclic AMP on collagen production by corneal fibroblasts.
    Chao WT; Walkenbach RJ
    Curr Eye Res; 1986 Mar; 5(3):177-82. PubMed ID: 2421978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of agonist-induced phosphoinositide metabolism, Ca2+ signalling and contraction of airway smooth muscle by cyclic AMP-dependent mechanisms.
    Hoiting BH; Meurs H; Schuiling M; Kuipers R; Elzinga CR; Zaagsma J
    Br J Pharmacol; 1996 Feb; 117(3):419-426. PubMed ID: 8821529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term potentiation of transmitter release induced by adrenaline in bull-frog sympathetic ganglia.
    Kuba K; Kumamoto E
    J Physiol; 1986 May; 374():515-30. PubMed ID: 2427705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and cyclic AMP-dependent regulation of a high affinity serotonin transporter in the human placental choriocarcinoma cell line (JAR).
    Cool DR; Leibach FH; Bhalla VK; Mahesh VB; Ganapathy V
    J Biol Chem; 1991 Aug; 266(24):15750-7. PubMed ID: 1714897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opioid inhibition of cholinergic transmission in the guinea-pig ileum is independent of intracellular cyclic AMP.
    Johnson SM
    Eur J Pharmacol; 1990 May; 180(2-3):331-8. PubMed ID: 1694775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cyclic AMP in promoting the thromboresistance of human endothelial cells by enhancing thrombomodulin and decreasing tissue factor activities.
    Archipoff G; Beretz A; Bartha K; Brisson C; de la Salle C; Froget-Léon C; Klein-Soyer C; Cazenave JP
    Br J Pharmacol; 1993 May; 109(1):18-28. PubMed ID: 7684300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Ca2+ current in canine colonic myocytes by cyclic nucleotide-dependent mechanisms.
    Koh SD; Sanders KM
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C794-803. PubMed ID: 8843708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.