These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24696182)

  • 1. A new window to understanding individual differences in reward sensitivity from attentional networks.
    Costumero V; Barrós-Loscertales A; Bustamante JC; Fuentes P; Rosell-Negre P; Ventura-Campos N; Ávila C
    Brain Struct Funct; 2015; 220(3):1807-21. PubMed ID: 24696182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural responses to monetary incentives in younger and older adults.
    Spaniol J; Bowen HJ; Wegier P; Grady C
    Brain Res; 2015 Jul; 1612():70-82. PubMed ID: 25305570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing individual differences in reward sensitivity from the brain networks involved in response inhibition.
    Fuentes-Claramonte P; Ávila C; Rodríguez-Pujadas A; Costumero V; Ventura-Campos N; Bustamante JC; Rosell-Negre P; Barrós-Loscertales A
    Neuroimage; 2016 Jan; 124(Pt A):287-299. PubMed ID: 26343318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective connectivity during feature-based attentional capture: evidence against the attentional reorienting hypothesis of TPJ.
    DiQuattro NE; Sawaki R; Geng JJ
    Cereb Cortex; 2014 Dec; 24(12):3131-41. PubMed ID: 23825319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural processing of reward magnitude under varying attentional demands.
    Stoppel CM; Boehler CN; Strumpf H; Heinze HJ; Hopf JM; Schoenfeld MA
    Brain Res; 2011 Apr; 1383():218-29. PubMed ID: 21295019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional parcellation of attentional control regions of the brain.
    Woldorff MG; Hazlett CJ; Fichtenholtz HM; Weissman DH; Dale AM; Song AW
    J Cogn Neurosci; 2004; 16(1):149-65. PubMed ID: 15006044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention.
    Chechlacz M; Gillebert CR; Vangkilde SA; Petersen A; Humphreys GW
    J Neurosci; 2015 Jul; 35(30):10647-58. PubMed ID: 26224851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of neural networks for anticipation and consumption of monetary and social rewards.
    Rademacher L; Krach S; Kohls G; Irmak A; Gründer G; Spreckelmeyer KN
    Neuroimage; 2010 Feb; 49(4):3276-85. PubMed ID: 19913621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-face recognition activates a frontoparietal "mirror" network in the right hemisphere: an event-related fMRI study.
    Uddin LQ; Kaplan JT; Molnar-Szakacs I; Zaidel E; Iacoboni M
    Neuroimage; 2005 Apr; 25(3):926-35. PubMed ID: 15808992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional modulation of reward processing in the human brain.
    Rothkirch M; Schmack K; Deserno L; Darmohray D; Sterzer P
    Hum Brain Mapp; 2014 Jul; 35(7):3036-51. PubMed ID: 24307490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incentives facilitate developmental improvement in inhibitory control by modulating control-related networks.
    Hallquist MN; Geier CF; Luna B
    Neuroimage; 2018 May; 172():369-380. PubMed ID: 29391243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual differences in regulatory focus predict neural response to reward.
    Scult MA; Knodt AR; Hanson JL; Ryoo M; Adcock RA; Hariri AR; Strauman TJ
    Soc Neurosci; 2017 Aug; 12(4):419-429. PubMed ID: 27074863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations.
    Gerlach KD; Spreng RN; Madore KP; Schacter DL
    Soc Cogn Affect Neurosci; 2014 Dec; 9(12):1942-51. PubMed ID: 24493844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reward Motivation Enhances Task Coding in Frontoparietal Cortex.
    Etzel JA; Cole MW; Zacks JM; Kay KN; Braver TS
    Cereb Cortex; 2016 Apr; 26(4):1647-59. PubMed ID: 25601237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validating incentive salience with functional magnetic resonance imaging: association between mesolimbic cue reactivity and attentional bias in alcohol-dependent patients.
    Vollstädt-Klein S; Loeber S; Richter A; Kirsch M; Bach P; von der Goltz C; Hermann D; Mann K; Kiefer F
    Addict Biol; 2012 Jul; 17(4):807-16. PubMed ID: 21790907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of intrinsic and extrinsic motivation on memory formation: insight from behavioral and imaging study.
    Duan H; Fernández G; van Dongen E; Kohn N
    Brain Struct Funct; 2020 Jun; 225(5):1561-1574. PubMed ID: 32350643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD; Woldorff MG; Mangun GR
    Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Between thoughts and actions: motivationally salient cues invigorate mental action in the human brain.
    Mendelsohn A; Pine A; Schiller D
    Neuron; 2014 Jan; 81(1):207-17. PubMed ID: 24333054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.