These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 24696456)

  • 41. Functional domains of Drosophila UNR in translational control.
    Abaza I; Gebauer F
    RNA; 2008 Mar; 14(3):482-90. PubMed ID: 18203923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combinatorial use of translational co-factors for cell type-specific regulation during neuronal morphogenesis in Drosophila.
    Olesnicky EC; Bhogal B; Gavis ER
    Dev Biol; 2012 May; 365(1):208-18. PubMed ID: 22391052
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystallization and characterization of Pumilo: a novel RNA binding protein.
    Edwards TA; Trincao J; Escalante CR; Wharton RP; Aggarwal AK
    J Struct Biol; 2000 Dec; 132(3):251-4. PubMed ID: 11303521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The TRIM-NHL protein Brat promotes axon maintenance by repressing src64B expression.
    Marchetti G; Reichardt I; Knoblich JA; Besse F
    J Neurosci; 2014 Oct; 34(41):13855-64. PubMed ID: 25297111
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage.
    Neumüller RA; Betschinger J; Fischer A; Bushati N; Poernbacher I; Mechtler K; Cohen SM; Knoblich JA
    Nature; 2008 Jul; 454(7201):241-5. PubMed ID: 18528333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila.
    Dahanukar A; Walker JA; Wharton RP
    Mol Cell; 1999 Aug; 4(2):209-18. PubMed ID: 10488336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators.
    Aviv T; Lin Z; Lau S; Rendl LM; Sicheri F; Smibert CA
    Nat Struct Biol; 2003 Aug; 10(8):614-21. PubMed ID: 12858164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression.
    Larson ED; Komori H; Fitzpatrick ZA; Krabbenhoft SD; Lee CY; Harrison M
    G3 (Bethesda); 2022 Aug; 12(9):. PubMed ID: 35876878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mei-P26 mediates tissue-specific responses to the Brat tumor suppressor and the dMyc proto-oncogene in Drosophila.
    Ferreira A; Boulan L; Perez L; Milán M
    Genetics; 2014 Sep; 198(1):249-58. PubMed ID: 24990993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A major role for zygotic hunchback in patterning the Nasonia embryo.
    Pultz MA; Westendorf L; Gale SD; Hawkins K; Lynch J; Pitt JN; Reeves NL; Yao JC; Small S; Desplan C; Leaf DS
    Development; 2005 Aug; 132(16):3705-15. PubMed ID: 16077090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Novel Mutation in Brain Tumor Causes Both Neural Over-Proliferation and Neurodegeneration in Adult
    Loewen C; Boekhoff-Falk G; Ganetzky B; Chtarbanova S
    G3 (Bethesda); 2018 Oct; 8(10):3331-3346. PubMed ID: 30126833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons.
    Ye B; Petritsch C; Clark IE; Gavis ER; Jan LY; Jan YN
    Curr Biol; 2004 Feb; 14(4):314-21. PubMed ID: 14972682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans.
    Kraemer B; Crittenden S; Gallegos M; Moulder G; Barstead R; Kimble J; Wickens M
    Curr Biol; 1999 Sep; 9(18):1009-18. PubMed ID: 10508609
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hunchback is counter-repressed to regulate even-skipped stripe 2 expression in Drosophila embryos.
    Vincent BJ; Staller MV; Lopez-Rivera F; Bragdon MDJ; Pym ECG; Biette KM; Wunderlich Z; Harden TT; Estrada J; DePace AH
    PLoS Genet; 2018 Sep; 14(9):e1007644. PubMed ID: 30192762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro.
    Smibert CA; Lie YS; Shillinglaw W; Henzel WJ; Macdonald PM
    RNA; 1999 Dec; 5(12):1535-47. PubMed ID: 10606265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanos interacts with cup in the female germline of Drosophila.
    Verrotti AC; Wharton RP
    Development; 2000 Dec; 127(23):5225-32. PubMed ID: 11060247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A CCHC metal-binding domain in Nanos is essential for translational regulation.
    Curtis D; Treiber DK; Tao F; Zamore PD; Williamson JR; Lehmann R
    EMBO J; 1997 Feb; 16(4):834-43. PubMed ID: 9049312
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.
    Joly W; Chartier A; Rojas-Rios P; Busseau I; Simonelig M
    Stem Cell Reports; 2013; 1(5):411-24. PubMed ID: 24286029
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors.
    Dai Q; Ren A; Westholm JO; Serganov AA; Patel DJ; Lai EC
    Genes Dev; 2013 Mar; 27(6):602-14. PubMed ID: 23468431
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA recognition via the SAM domain of Smaug.
    Green JB; Gardner CD; Wharton RP; Aggarwal AK
    Mol Cell; 2003 Jun; 11(6):1537-48. PubMed ID: 12820967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.