These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 24696841)
1. Production of biodiesel from Chlorella sp. enriched with oyster shell extracts. Choi CS; Choi WY; Kang DH; Lee HY Biomed Res Int; 2014; 2014():105728. PubMed ID: 24696841 [TBL] [Abstract][Full Text] [Related]
2. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Zhou X; Xia L; Ge H; Zhang D; Hu C Bioresour Technol; 2013 Jun; 138():131-5. PubMed ID: 23612171 [TBL] [Abstract][Full Text] [Related]
4. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Hu B; Min M; Zhou W; Du Z; Mohr M; Chen P; Zhu J; Cheng Y; Liu Y; Ruan R Bioresour Technol; 2012 Dec; 126():71-9. PubMed ID: 23073091 [TBL] [Abstract][Full Text] [Related]
5. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
6. Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa. Shekh AY; Shrivastava P; Krishnamurthi K; Mudliar SN; Devi SS; Kanade GS; Lokhande SK; Chakrabarti T Bioresour Technol; 2013 Jun; 138():382-6. PubMed ID: 23642439 [TBL] [Abstract][Full Text] [Related]
7. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima. Oh SH; Kwon MC; Choi WY; Seo YC; Kim GB; Kang DH; Lee SY; Lee HY J Biosci Bioeng; 2010 Aug; 110(2):194-200. PubMed ID: 20547326 [TBL] [Abstract][Full Text] [Related]
8. Heterotrophic production of Chlorella sp. TISTR 8990-biomass growth and composition under various production conditions. Bouyam S; Choorit W; Sirisansaneeyakul S; Chisti Y Biotechnol Prog; 2017 Nov; 33(6):1589-1600. PubMed ID: 28653476 [TBL] [Abstract][Full Text] [Related]
9. Lipid production by a CO₂-tolerant green microalga, Chlorella sp. MRA-1. Zheng Y; Yuan C; Liu J; Hu G; Li F J Microbiol Biotechnol; 2014 May; 24(5):683-9. PubMed ID: 24572279 [TBL] [Abstract][Full Text] [Related]
10. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima. Jung JY; Kim S; Lee H; Kim K; Kim W; Park MS; Kwon JH; Yang JW Bioprocess Biosyst Eng; 2014 Dec; 37(12):2395-400. PubMed ID: 24871274 [TBL] [Abstract][Full Text] [Related]
11. Lipid production from indigenous Greek microalgae: a possible biodiesel source. Savvides AL; Moisi K; Katsifas EA; Karagouni AD; Hatzinikolaou DG Biotechnol Lett; 2019 May; 41(4-5):533-545. PubMed ID: 30993480 [TBL] [Abstract][Full Text] [Related]
12. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Zhu LD; Li ZH; Guo DB; Huang F; Nugroho Y; Xia K Bioresour Technol; 2017 Jan; 223():296-300. PubMed ID: 27729191 [TBL] [Abstract][Full Text] [Related]
13. Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production. Chandra R; Amit ; Ghosh UK Environ Sci Pollut Res Int; 2019 Feb; 26(4):3848-3861. PubMed ID: 30539390 [TBL] [Abstract][Full Text] [Related]
14. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Praveenkumar R; Kim B; Choi E; Lee K; Park JY; Lee JS; Lee YC; Oh YK Bioresour Technol; 2014 Nov; 171():500-5. PubMed ID: 25227588 [TBL] [Abstract][Full Text] [Related]
15. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production. Bharte S; Desai K Environ Sci Pollut Res Int; 2019 Feb; 26(4):3492-3500. PubMed ID: 30519914 [TBL] [Abstract][Full Text] [Related]
16. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
17. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
18. [Optimization of photoautotrophic lipid production of Chlorella ellipsoidea seeded with heterotrophic cells]. Wang J; Li Y; Wang W; Huang J; Shen G; Li S; Pan R Sheng Wu Gong Cheng Xue Bao; 2014 Oct; 30(10):1639-43. PubMed ID: 25726589 [TBL] [Abstract][Full Text] [Related]
19. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Chen YH; Walker TH Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839 [TBL] [Abstract][Full Text] [Related]
20. Enhancement in lipid content of Chlorella sp. MJ 11/11 from the spent medium of thermophilic biohydrogen production process. Ghosh S; Roy S; Das D Bioresour Technol; 2017 Jan; 223():219-226. PubMed ID: 27794270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]