These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 24697350)

  • 1. Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas.
    Syrenova S; Wadell C; Langhammer C
    Nano Lett; 2014 May; 14(5):2655-63. PubMed ID: 24697350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching.
    Chen K; Duy Dao T; Nagao T
    Sci Rep; 2017 Mar; 7():44069. PubMed ID: 28272442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Nanoring Fabrication Assisted by Hole-mask Colloidal Lithography.
    Baami González X; Tran JD; Sutherland DS
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35361-35371. PubMed ID: 38940634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Approach for Colloidal Lithography: From Dry Particle Assembly to High-Throughput Nanofabrication.
    Tzadka S; Ureña Martin C; Toledo E; Yassin AAK; Pandey A; Le Saux G; Porgador A; Schvartzman M
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17846-17856. PubMed ID: 38549366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence Enhancement in Topologically Optimized Gallium Phosphide All-Dielectric Nanoantennas.
    Vidal C; Tilmann B; Tiwari S; Raziman TV; Maier SA; Wenger J; Sapienza R
    Nano Lett; 2024 Feb; 24(8):2437-2443. PubMed ID: 38354357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale Hotspot-Induced Emitters in DNA Origami-Assisted Nanoantennas.
    Yeşilyurt ATM; Wu X; Tapio K; Bald I; Huang JS
    J Am Chem Soc; 2023 Dec; 145(48):25928-25932. PubMed ID: 38010132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomanufacturing: A Perspective.
    Liddle JA; Gallatin GM
    ACS Nano; 2016 Mar; 10(3):2995-3014. PubMed ID: 26862780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Microshutter for the Nanofabrication of Plasmonic Metal Alloys with Single Nanoparticle Composition Control.
    Andersson C; Serebrennikova O; Tiburski C; Alekseeva S; Fritzsche J; Langhammer C
    ACS Nano; 2023 Aug; 17(16):15978-15988. PubMed ID: 37535838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Plasmonics with Metamaterials.
    Wang P; Krasavin AV; Liu L; Jiang Y; Li Z; Guo X; Tong L; Zayats AV
    Chem Rev; 2022 Oct; 122(19):15031-15081. PubMed ID: 36194441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking the symmetry of nanosphere lithography with anisotropic plasma etching induced by temperature gradients.
    Darvill D; Iarossi M; Abraham Ekeroth RM; Hubarevich A; Huang JA; De Angelis F
    Nanoscale Adv; 2021 Jan; 3(2):359-369. PubMed ID: 36131733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures.
    Kotnala A; Ding H; Zheng Y
    ACS Photonics; 2021 Jun; 8(6):1673-1682. PubMed ID: 35445142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shedding Light on CO Oxidation Surface Chemistry on Single Pt Catalyst Nanoparticles Inside a Nanofluidic Model Pore.
    Albinsson D; Bartling S; Nilsson S; Ström H; Fritzsche J; Langhammer C
    ACS Catal; 2021 Feb; 11(4):2021-2033. PubMed ID: 33643681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper catalysis at operando conditions-bridging the gap between single nanoparticle probing and catalyst-bed-averaging.
    Albinsson D; Boje A; Nilsson S; Tiburski C; Hellman A; Ström H; Langhammer C
    Nat Commun; 2020 Sep; 11(1):4832. PubMed ID: 32973158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics.
    Baffou G; Bordacchini I; Baldi A; Quidant R
    Light Sci Appl; 2020; 9():108. PubMed ID: 32612818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Metasurface for Spatially Resolved Optical Sensing in Three Dimensions.
    Nugroho FAA; Albinsson D; Antosiewicz TJ; Langhammer C
    ACS Nano; 2020 Feb; 14(2):2345-2353. PubMed ID: 31986008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Plasmonic Nanospectroscopy of the CO Oxidation Reaction over Single Pt Nanoparticles.
    Liu S; Arce AS; Nilsson S; Albinsson D; Hellberg L; Alekseeva S; Langhammer C
    ACS Nano; 2019 May; 13(5):6090-6100. PubMed ID: 31091069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterodimers for in Situ Plasmonic Spectroscopy: Cu Nanoparticle Oxidation Kinetics, Kirkendall Effect, and Compensation in the Arrhenius Parameters.
    Albinsson D; Nilsson S; Antosiewicz TJ; Zhdanov VP; Langhammer C
    J Phys Chem C Nanomater Interfaces; 2019 Mar; 123(10):6284-6293. PubMed ID: 30906496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanodisc arrays on calcinated titania for multimodal analysis of phosphorylated peptides.
    Hinman SS; Nguyen RCT; Cheng Q
    RSC Adv; 2017; 7(76):48068-48076. PubMed ID: 30701066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective Optical Properties of Inhomogeneously Distributed Nanoobjects in Strong Field Gradients of Nanoplasmonic Sensors.
    Czajkowski KM; Świtlik D; Langhammer C; Antosiewicz TJ
    Plasmonics; 2018; 13(6):2423-2434. PubMed ID: 30595678
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.