These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24697369)

  • 1. Chaotic vibrations of the duffing system with fractional damping.
    Syta A; Litak G; Lenci S; Scheffler M
    Chaos; 2014 Mar; 24(1):013107. PubMed ID: 24697369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcation and chaos detection of a fractional Duffing-van der Pol oscillator with two periodic excitations and distributed time delay.
    Zhang Y; Li J; Zhu S; Zhao H
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaos detection of Duffing system with fractional-order derivative by Melnikov method.
    Niu J; Liu R; Shen Y; Yang S
    Chaos; 2019 Dec; 29(12):123106. PubMed ID: 31893643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The discrete fractional duffing system: Chaos, 0-1 test, C
    Ouannas A; Khennaoui AA; Momani S; Pham VT
    Chaos; 2020 Aug; 30(8):083131. PubMed ID: 32872811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study and circuit implementation of three chain-coupled self-driven Duffing oscillators.
    Sundarambal B; Kemgang LK; Jacques K; Rajagopal K
    Chaos; 2023 Nov; 33(11):. PubMed ID: 38029761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double excitation multi-stability and multi-pulse chaotic vibrations of a bistable asymmetric laminated composite square panels under foundation force.
    Zhang W; Ma WS; Zhang YF; Liu YZ
    Chaos; 2020 Aug; 30(8):083105. PubMed ID: 32872791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic and pseudochaotic attractors of perturbed fractional oscillator.
    Zaslavsky GM; Stanislavsky AA; Edelman M
    Chaos; 2006 Mar; 16(1):013102. PubMed ID: 16599733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of tristable energy harvesting system having fractional order viscoelastic material.
    Oumbé Tékam GT; Kwuimy CA; Woafo P
    Chaos; 2015 Jan; 25(1):013112. PubMed ID: 25637923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifurcation, chaotic behaviors and solitary wave solutions for the fractional Twin-Core couplers with Kerr law non-linearity.
    Li Z; Lyu J; Hussain E
    Sci Rep; 2024 Sep; 14(1):22616. PubMed ID: 39349816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application.
    Liu HF; Yang YZ; Dai ZH; Yu ZH
    Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melnikov's criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation.
    Kwuimy CA; Nataraj C; Litak G
    Chaos; 2011 Dec; 21(4):043113. PubMed ID: 22225350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives.
    Debbouche N; Ouannas A; Batiha IM; Grassi G
    Nonlinear Dyn; 2022; 109(1):33-45. PubMed ID: 34511721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcation and chaos in coupled ratchets exhibiting synchronized dynamics.
    Vincent UE; Kenfack A; Njah AN; Akinlade O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056213. PubMed ID: 16383733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossover from classical to quantum behavior of the Duffing oscillator through a pseudo-Lyapunov-exponent.
    Ota Y; Ohba I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):015201. PubMed ID: 15697643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects.
    Zhang WM; Meng G; Zhou JB; Chen JY
    Sensors (Basel); 2009; 9(5):3854-74. PubMed ID: 22412340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical Analysis of a New Chaotic Fractional Discrete-Time System and Its Control.
    Almatroud AO; Khennaoui AA; Ouannas A; Grassi G; Al-Sawalha MM; Gasri A
    Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Chaotic Behaviors of Fractional Order Love Model Without External Environment Effect.
    Huang L; Bae Y; Weng MH
    Nonlinear Dynamics Psychol Life Sci; 2024 Jan; 28(1):55-70. PubMed ID: 38153301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic dynamics of a magnetic nanoparticle.
    Bragard J; Pleiner H; Suarez OJ; Vargas P; Gallas JA; Laroze D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):037202. PubMed ID: 22060537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the trustworthiness of chaos and synchronization of chaotic satellite model: a practice of discrete fractional-order approaches.
    Rashid S; Hamidi SZ; Akram S; Alosaimi M; Chu YM
    Sci Rep; 2024 May; 14(1):10674. PubMed ID: 38724584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.